

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1CR and Science (Double Award) (4SD0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P71951A
Publications Code 4CH1_1CR_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	six particles should be arranged randomly	max of two particles should touch	1
		ALLOW between 5 and 10 particles	
(ii)	particles are (much) closer together	ALLOW the density is (much) greater / less space between particles / packed more tightly	1
(iii)	Any one from:		1
	high pressure		
	risk of explosion		
	oxidising agent		
	risk in contact with combustible materials	ALLOW risk of fire	
		IGNORE flammable	
(b) (i)	blue flame	ALLOW choking /pungent gas produced / sulfur darkens	1
(ii)	M1 (final colour) red/orange/yellow	IGNORE any original colour	2
	M2 an acidic solution/an acid/sulfurous acid is formed	ALLOW sulfuric acid	
	Torried	ALLOW sulfur dioxide is acidic	
		ACCEPT the solution formed contains hydrogen ions	
	<u>l</u>	Total for c	question = 6

Question number	Answer	Notes	Marks
2 (a)	crystallisation		3
	simple distillation	REJECT distillation	
	filtration		
(b)	(the box contains) (2) different substances /elements	IGNORE type of particle	1
	/ eternetics	REJECT compounds	
(c)	Any two from:		2
	M1 D contains 3 food dyes		
	M2 food colouring D contains A and C		
	M3 food colouring D does not contain B / food colouring D contains another dye (which is not A. B or C)		
(d) (i)	4		1
(ii)	11		1
		Total for o	question = 8

Questi		Answer	Notes	Marks
3 (a)	(i)	A (electron)		1
		B is not the correct answer because neutrons exist in the nucleus. C is not the correct answer because particle W is not a nucleus. D is not the correct answer because protons exist in the nucleus.		
	(ii)	C (25)		1
		A is not the correct answer as the proton number is 12 B is not the correct answer as the number of neutrons is 13 D is not the correct answer as the number of protons, neutrons and electrons is not 49		
	(iii)	(atoms have the) same number of protons and electrons		1
	(iv)	B (2+)		1
		A is not the correct answer as this atom will not form an ion with a + charge. C is not the correct answer as this atom will not form an ion with a - charge. D is not the correct answer as this atom will not form an ion with a 2- charge.		
(b)	(i)	(both isotopes have) the same number of electrons / the same electron configuration	IGNORE same number of protons / same number of electrons in the outer shell	1
	(ii)		Answer of 6.92 scores 3	3
		M1 (7.60 × 6) + (92.4 × 7)	ACCEPT (6 × 0.076) + (7 × 0.924)	
		M2 692.4÷100 OR 6.924		
		M3 6.92	ALLOW ecf if use of 6 and 7 in calculation	
			Total for q	uestion = 8

Question number	Answer		Notes	Marks
4 (a)				4
	Information	Gas		
	the most abundant gas in air	nitrogen		
	a toxic gas that is a product of incomplete combustion of hydrocarbons	carbon monoxide		
	an unreactive gas that exists as atoms	helium		
	a gas produced by the fractional distillation of crude oil	methane		
(b) (i)	copper(II) oxide / CuO / copper oxid	le forms	REJECT copper(I) oxide	1
(ii)	the volume of a gas changes with te expands when hot / heated / gas sh OWTTE			1
(iii)	M1 138 - 108 OR 30 (cm ³)			2
	M2 ((30÷138) × 100 =) 21.7		ALLOW minimum 2 significant figures	
			21.7 / 21.74 / 22 scores 2	
			78.3 / 78.26 / 78 scores 1	
			Total for que	stion = 8

uesti		Answer	Notes	Marks
umb (a)	er (i)	M1 water	ALLOW moisture / H ₂ O	2
		M2 oxygen	ALLOW air / O ₂	
			answers can be in either order	
	(ii)	oxidation	ALLOW oxidisation / oxidising / redox	1
(b)	(i)	M1 paint acts as a barrier / layer		2
		M2 which prevents air / oxygen / water getting to / reacting with the iron		
	(ii)	galvanising	ALLOW galvanisation	1
			IGNORE sacrificial protection	
	(iii)	M1 zinc is more reactive than iron		2
		M2 (therefore) is oxidised / reacts with oxygen / loses electrons more readily / in preference to	ALLOW corrodes instead of iron	
		/instead of iron	REJECT zinc rusts	
(c)	(i)	M1 aluminium is more reactive than iron / ORA		2
		M2 because aluminium displaces iron (from iron(III) oxide)		
	(ii)	M1 iron(III) oxide (is the oxidising agent)	ALLOW iron oxide / iron ions / Fe ³⁺ ions throughout	2
		M2 iron(III) oxide donates oxygen to aluminium	ALLOW (iron(III) oxide / iron ions / Fe ³⁺ ions) takes electrons from aluminium	
			ALLOW (iron(III) oxide / iron ions / Fe ³⁺ ions) causes aluminium to be oxidised	
			Total for qu	estion = 12

Question number	Answer	Notes	Marks
6 (a)	the gas also contains air (displaced from the conical flask)		1
(b)	M1 a catalyst provides an alternative (reaction) pathway / route		2
	M2 of lower activation energy		
(c)	M1 add hydrogen peroxide solution (to the conical flask) and add one of the catalysts		5
	M2 record the time taken to collect a fixed volume of gas OR record the volume of gas collected in a fixed time	ALLOW record the time when no more gas produced	
	AND any 2 from		
	M3 repeat with the same volume / same concentration of hydrogen peroxide solution	ALLOW same amount	
	M4 (repeat at) same temperature		
	M5 use same mass / same surface area of each catalyst	ALLOW same amount	
	AND		
	M6 the most effective catalyst produces the greatest volume of gas per unit time OR takes the least time to produce a fixed volume of oxygen	ALLOW the least time taken to complete the reaction is the most effective catalyst	
(d)	M1 steeper curve starting at the origin		2
	M2 same volume of oxygen produced		
		Total for qu	uestion = 10

Question number	Answer	Notes	Marks
7 (a)	M1 limewater turns cloudy /milky	ALLOW chalky / white precipitate	2
	AND any one from:	precipitate	
	M2 because carbon dioxide / CO ₂ is / produced /one of the products	ALLOW carbon dioxide / CO ₂ is present	
	M3 which reacts with limewater forming calcium carbonate	ALLOW forming an insoluble product	
(b) (i)	M1 amount of water = 2.16÷18 OR 0.12 mol		3
	M2 number of hydrogen atoms (0.12÷0.01)×2 OR 24	ALLOW 12H ₂ O	
	M3 formula of alkene = C ₁₂ H ₂₄		
		Correct answer of C ₁₂ H ₂₄ scores 3	
		C ₆ H ₁₂ scores 2	
(ii)	some steam / water vapour is lost (to the atmosphere)	ALLOW some steam /water vapour does not condense	1
		IGNORE references to incomplete combustion	
(iii)	M1 heat (the water) / measure the boiling point	ALLOW find the freezing point /melting point	2
		REJECT evaporate	
	M2 (if it) boils at 100 °C (it is pure water) / boiling point is 100 °C	ALLOW freezes/ melts at 0°C	
(c)	M1 (moles of heptane) = 30 ÷ 100 OR 0.3(0)	Answer of 106 g OR 105.6 g scores 3	3
	M2 (moles of oxygen) = $0.3(0) \times 11$ OR 3.3	ALLOW M1 × 11	
	M3 (mass of oxygen) = $(3.3 \times 32) = 106$ (g)	ALLOW ecf from M2	
	OR	ALLOW 2 or more significant figures for M3	
	M1 11 x 32 OR 352 (g) of oxygen		
	M2 so mass of oxygen = 352 x 30 ÷ 100		
	M3 106 (g)	Answer of 9.6 (g) scores 2	
		Total for que	stion = 11

Question number	Answer	Notes	Marks
8 (a)	M1 graphite has delocalised electrons	IGNORE sea of electrons /free electrons	2
	M2 that are able to flow throughout the structure	ACCEPT are able to move / are mobile	
		IGNORE references to carrying charge/current	
		M2 dep on mention of electrons	
		Any mention of ions in graphite scores 0 out of 2	
(b)	M1 (diamond is hard because) it has a 3D lattice/rigid lattice /tetrahedral lattice /every carbon is bonded to four other carbons	ALLOW 3D/ rigid/ tetrahedral structure	2
		REJECT mention of intermolecular forces in diamond	
	M2 (graphite is soft because) the layers can slide over one another	IGNORE mention of intermolecular forces between layers in graphite	
(c)	Any one from:	ALLOW any acceptable answer	1
	(the C ₆₀ molecule/it) will not react with the blood/medicine	ALLOW it is inert /unreactive	
	(the C ₆₀ molecule/it) is non-toxic		
	the medicine can fit inside (the C ₆₀ molecule)		
		Total for o	question = 5

Quest numb		Answer	Notes	Marks
9 (a)	(i)	M1 Ca ²⁺ M2 NO ₃ ⁻	Max 1 for use of incorrect subscripts, case	2
	(ii)	M1 (calcium nitrate) has a giant ionic structure /lattice		4
		M2 strong electrostatic forces / attraction	ALLOW strong ionic bonds	
		M3 between oppositely charged ions /negative and positive ions / anions and cations	No M2 or M3 if reference to sharing of electrons or intermolecular forces	
		M4 which take a lot of energy to overcome (the forces) / break the bonds	IGNORE more energy /heat	
	(iii)	$2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$	ALLOW fractions and multiples	1
(b)		Any 2 from M1, M2 and M3		6
		flame test		
		M1 do a flame test	ALLOW description of flame test	
		M2 sodium chloride and sodium sulfate give a yellow flame	ALLOW sodium (ions)	
		M3 calcium chloride and calcium bromide give an orange-red flame	ALLOW orange/brick-red	
		Any 4 from M4 to M8	ALLOW calcium (ions)	
		halide ion test	REJECT any extra incorrect reagent for M4	
		M4 add acidified silver nitrate / add nitric acid and silver nitrate	REJECT hydrochloric or sulfuric acid for M4	
		M5 calcium bromide / bromide ions gives a cream precipitate		
		M6 calcium chloride / sodium chloride / chloride ions give a white precipitate	M5 and M6 dep on silver nitrate in M4	
		sulfate ion test	REJECT any extra incorrect reagent for M7	
		M7 add acidified barium chloride / barium nitrate	ALLOW any named acid except sulfuric acid	
		M8 sodium sulfate / sulfate ions gives a white precipitate	M8 dep on barium chloride / barium nitrate in M7	
			Total for que	stion = 13

Question number	Answer	Notes	Marks
10 (a) (i)	M1 four electrons between carbon 2 and carbon 3 and two electrons between carbon 1 and carbon 2	ACCEPT any combination of dots and crosses	2
	M2 two electrons between each carbon and hydrogen	Max 1 if any extra non- bonding electrons added	
	H C C C C H		
(ii)	M1 shared pair(s) of electrons		2
	M2 attracted to (two) nuclei OR	REJECT nucleus. Must be plural for M2	
	M1 (two) nuclei	REJECT nucleus. Must	
	M2 attracted to shared pair(s) of electrons	be plural for M1	
(b)	Any two from:		2
	M1 cracking M2 heat to / at a temperature of 600-700°C	ALLOW a correct cracking equation including propene	
	M3 with a catalyst of silica/alumina	ALLOW aluminosilicates / aluminium oxide / silicon oxide/Al ₂ O ₃ /SiO ₂ /zeolites	
(c) (i)	M1	ALLOW correct repeat unit with or without extension bonds	2
	M2 extension bonds, brackets and n to the right	M2 dep on M1	
(ii)	M1 (poly(propene)) remains for a long time (in landfill)	ALLOW takes up a lot of space	2
	M2 because it is inert/unreactive/non-biodegradable	ALLOW does not decompose	

(d) (i)	M1 $\frac{60}{12}$ $\frac{13.3}{1}$ $\frac{26.7}{16}$	C₃H ₈ O scores 3	3
	$M2 \frac{5}{1.67} \frac{13.3}{1.67} \frac{1.67}{1.67}$		
	OR 3:8:1		
	M3 (36 + 8 + 16 = 60 / 60 \div 60 = 1 so molecular formula is) C_3H_8O	atoms can be in any order	
		no marks for upside down calculation or use of atomic numbers	
		ACCEPT alternative methods	
(ii)	M1 intermolecular forces in compound X are stronger		2
	AND any one from		
	M2 so require more energy to overcome	M2, M3, and M4 dep on M1	
	$M3$ because the $M_{\rm r}$ / the surface area of the molecule is higher	MI	
	M4 because the molecule has more electrons		
	1	Total for qu	uestion = 15

)uesti numb		Answer	Notes	Marks
(a)	(i)	all 9 points plotted ± half a square		1
	(ii)	circle around point at 3 g	ALLOW 18 or 3 circled in the table	1
	(iii)	points joined by curved line of best fit		1
(b)	(i)	M1 polystyrene / it is a good insulator	ALLOW poor conductor (of heat)	2
		M2 polystyrene / it reduces heat (energy) / thermal energy gain / transfer from surroundings OWTTE	ALLOW polystyrene /it does not absorb heat /stops heat entering (the cup)	
			REJECT heat loss (to surroundings)	
	(ii)	the student forgot to stir the mixture	ALLOW took the temperature reading too soon	1
			REJECT the student added too little or forgot to add the solid	
	(iii)	(the last three) results / temperatures are the same		1
	(iv)	because the temperature decreases	ALLOW because heat / thermal energy is taken in	1
(c)		M1 (ΔT =) 20.8 – 15.3 OR 5.5 (°C)	Answer of 2310 scores 2	2
		M2 (Q = 100 x 4.2 x 5.5 =) 2 310 (J)	ALLOW ecf if incorrect temperature change	
			IGNORE any sign given	
(d)		M1 moles of NaHCO ₃ = 7.0 ÷ 84 OR 0.0833		4
		M2 3 200 ÷ 0.0833 OR 38 400 (J)		
		M3 38 400 ÷ 1000 OR 38.4 (kJ/mol)		
		M4 +38.4 (kJ/mol)		
		OR		
		M1 moles of NaHCO ₃ = 7.0 ÷ 84 OR 0.0833		
		M2 3 200 ÷ 1 000 OR 3.20 (kJ)		
		M3 3.20 ÷ 0.0833 OR 38.4 (kJ/mol)		
		M4 +38.4 (kJ/mol)		

	Answer of +38.4 scores 4	
	Answer of 38.4 scores 3	
	Use of 0.08 moles gives +40 which scores 4	
	Use of 0.083 moles gives +38.6 which scores 4	
	ALLOW any number of sig figs	
Total for question = 14		