
Paper Reference 4CP0/01
Pearson Edexcel Level 1 / Level 2
International GCSE (9 – 1)

COMPUTER SCIENCE
COMPONENT 1

Monday 20 May 2019 – Afternoon

Pseudocode command set

Q61880A

PSEUDOCODE COMMAND SET

Questions in the written examination that involve code will use
this pseudocode for clarity and consistency. However, students
may answer questions using any valid method.

DATA TYPES

INTEGER
REAL
BOOLEAN
CHARACTER

TYPE COERCION

Type coercion is automatic if indicated by context.
For example 3 + 8.25 = 11.25 (integer + real = real)
Mixed mode arithmetic is coerced like this:

INTEGER REAL

INTEGER INTEGER REAL

REAL REAL REAL

Coercion can be made explicit. For example, RECEIVE age
FROM (INTEGER) KEYBOARD assumes that the input from the
keyboard is interpreted as an INTEGER, not a STRING.

CONSTANTS

The value of constants can only ever be set once. They are
identified by the keyword CONST. Two examples of using a
constant are shown.

CONST REAL PI

SET PI TO 3.14159

SET circumference TO radius * PI * 2

DATA STRUCTURES

ARRAY
STRING

Indices start at zero (0) for all data structures.

All data structures have an append operator, indicated by &.

Using & with a STRING and a non – STRING will coerce to STRING.
For example, SEND ‘Fred’ & age TO DISPLAY, will display a
single STRING of ‘Fred18’.

IDENTIFIERS

Identifiers are sequences of letters, digits and ‘_’, starting with a
letter, for example: MyValue, myValue, My_Value, Counter2

FUNCTIONS

LENGTH()

For data structures consisting of an array or string.

RANDOM(n)

This generates a random number from 0 to n.

COMMENTS

Comments are indicated by the # symbol, followed by any text.

A comment can be on a line by itself or at the end of a line.

DEVICES

Use of KEYBOARD and DISPLAY are suitable for input and
output.

Additional devices may be required, but their function will be
obvious from the context. For example, CARD_READER and
MOTOR are two such devices.

NOTES

In the following pseudocode, the < > indicates where expressions
or values need to be supplied. The < > symbols are not part of the
pseudocode.

 VARIABLES AND ARRAYS

SYNTAX EXPLANATION OF SYNTAX EXAMPLE

 SET Variable TO <value> Assigns a value to a variable. SET Counter TO 0
 SET MyString TO ‘Hello world’

 SET Variable TO <expression>
 Computes the value of an
 expression and assigns to
 a variable.

 SET Sum TO Score + 10
 SET Size to LENGTH(Word)

 SET Array[index] TO <value> Assigns a value to an element
 of a one-dimensional array.

 SET ArrayClass[1] TO ‘Ann’
 SET ArrayMarks[3] TO 56

 SET Array TO [<value>, …] Initialises a one-dimensional
 array with a set of values. SET ArrayValues TO [1, 2, 3, 4, 5]

 SET Array [RowIndex,
 ColumnIndex] TO <value>

 Assigns a value to an element
 of a two dimensional array. SET ArrayClassMarks[2,4] TO 92

 SELECTION

SYNTAX EXPLANATION OF SYNTAX EXAMPLE

 IF <expression> THEN
 <command>
 END IF

 If <expression> is true then
 command is executed.

 IF Answer = 10 THEN
 SET Score TO Score + 1
 END IF

 IF <expression> THEN
 <command>
 ELSE
 <command>
 END IF

 If <expression> is true then first
 <command> is executed,
 otherwise second
 <command> is executed.

 IF Answer = ‘correct’ THEN
 SEND ‘Well done’ TO DISPLAY
 ELSE
 SEND ‘Try again’ TO DISPLAY
 END IF

 REPETITION

SYNTAX EXPLANATION OF SYNTAX EXAMPLE

 WHILE <condition> DO
 <command>
 END WHILE

 Pre – conditioned loop.
 Executes
 <command> whilst
 <condition> is true.

 WHILE Flag = 0 DO
 SEND ‘All well’ TO DISPLAY
 END WHILE

 REPEAT
 <command>
 UNTIL <expression>

 Post – conditioned loop.
 Executes
 <command> until <condition>
 is true. The loop must
 execute at least once.

 REPEAT
 SET Go TO Go + 1
 UNTIL Go = 10

 REPEAT <expression> TIMES
 <command>
 END REPEAT

 Count controlled loop. The
 number of times <command>
 is executed is determined by
 the expression.

 REPEAT 100 – Number TIMES
 SEND ‘*’ TO DISPLAY
 END REPEAT

 FOR <id> FROM <expression>
 TO
 <expression> DO
 <command>
 END FOR

 Count controlled loop.
 Executes
 <command> a fixed number
 of times.

 FOR Index FROM 1 TO 10 DO
 SEND ArrayNumbers[Index]
 TO DISPLAY
 END FOR

 FOR <id> FROM <expression>
 TO
 <expression> STEP
 <expression> DO
 <command>
 END FOR

 Count controlled loop using
 a step.

 FOR Index FROM 1 TO 500 STEP
 25 DO
 SEND Index TO DISPLAY
 END FOR

 FOR EACH <id> FROM
 <expression> DO
 <command>
 END FOREACH

 Count controlled loop.
 Executes for each element
 of an array.

 SET WordsArray TO [‘The’, ‘Sky’,
 ‘is’, ‘grey’]
 SET Sentence to ‘‘
 FOR EACH Word FROM
 WordsUArray DO
 SET Sentence TO Sentence &
 Word & ‘ ‘
 END FOREACH

 INPUT/OUTPUT

SYNTAX EXPLANATION OF SYNTAX EXAMPLE

 SEND <expression> TO
 DISPLAY Sends output to the screen. SEND ‘Have a good day.’ TO

 DISPLAY

 RECEIVE <identifier> FROM
 (type)
 <device>

 Reads input of specified
 type.

 RECEIVE Name FROM (STRING)
 KEYBOARD
 RECEIVE LengthOfJourney
 FROM (INTEGER) CARD_READER
 RECEIVE YesNo FROM
 (CHARACTER) CARD_READER

 FILE HANDLING

SYNTAX EXPLANATION OF SYNTAX EXAMPLE

 READ <File> <record>

 Reads in a record from a <file>
 and assigns to a <variable>.
 Each READ statement reads a
 record from the file.

 READ MyFile.doc Record

 WRITE <File> <record>
 Writes a record to a file.
 Each WRITE statement writes a
 record to the file.

 WRITE MyFile.doc Answer1,
 Answer2, ‘xyz 01’

 SUBPROGRAMS

SYNTAX EXPLANATION OF SYNTAX EXAMPLE

 PROCEDURE <id>
 (<parameter>, …)
 BEGIN PROCEDURE
 <command>
 END PROCEDURE

 Defines a procedure.

 PROCEDURE CalculateAverage
 (Mark1, Mark2, Mark3)
 BEGIN PROCEDURE
 SET Avg to (Mark1 + Mark2 +
 Mark3) / 3
 END PROCEDURE

 FUNCTION <id>
 (<parameter>, …)
 BEGIN FUNCTION
 <command>
 RETURN <expression>
 END FUNCTION

 Defines a function.

 FUNCTION AddMarks (Mark1,
 Mark2, Mark3)
 BEGIN FUNCTION
 SET Total to (Mark1 + Mark2 +
 Mark3) / 3
 RETURN Total
 END FUNCTION

 <id> (<parameter>, …) Calls a procedure or a
 function. Add (FirstMark, SecondMark)

ARITHMETIC OPERATORS

SYMBOL DESCRIPTION

+ Add

– Subtract

/ Divide

* Multiply

^ Exponent

MOD Modulo

DIV Integer division

RELATIONAL OPERATORS

SYMBOL DESCRIPTION

= equal to

< > not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

LOGICAL OPERATORS

SYMBOL DESCRIPTION

AND Returns true if both
 conditions are true.

OR Returns true if any of the
 conditions are true.

NOT
 Reverses the outcome of
 the expression; true becomes
 false, false becomes true.

