

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE
In Single Science Award (4SS0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022

Question Paper Log Number P71959A

Publications Code 4SS0_1C_2206_MS

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

	Question number		Answer	Notes	Marks
1	(a)	(i)	sulfur	ALLOW S	1
		(ii)	boron	ALLOW B	1
		(iii)	bromine	ALLOW Br/Br ₂	1
				ALLOW mercury/Hg	
	(b)	(i)	20 /twenty		1
		(ii)	S ²⁻	ALLOW S ⁻²	1
		(iii)	MgF ₂	ACCEPT Mg ²⁺ (F ⁻) ₂	1
	•	•			Total 6

Question number	Answer	Notes	Marks
2 (a) (i)	V is insoluble (in the solvent)/ does not dissolve (in the solvent)		1
(ii)	M1 X and Z		2
	M2 because the top spots are/dye is closest to the solvent front OR the dye/the top spots moved the furthest distance (from the start line) OWTTE	M2 dep on M1	
(b)	M1 distance from start line to spot to nearest mm 17 to 20 mm	ACCEPT answers in cm	3
	M2 distance from start line to solvent front to nearest mm 56 mm	ALLOW 55 - 57mm	
	$M3$ answer to $M1$ ÷ answer to $M2$ = R_f value between 0.30 and 0.36	ACCEPT any number of sig figs except 1	
		ALLOW ECF on incorrect measurements for M1 and/or M2	
			Total 6

Question number		Answer	Notes	Marks
3 (a)		alkali metals		1
(b)	(i)	D potassium sinks A is incorrect as a colourless solution forms B is incorrect as a lilac flame is seen C is incorrect as effervescence occurs		1
	(ii)	may explode /break the trough/ cause a fire	ALLOW (too) dangerous	1
	(iii)	OH-	ALLOW HO ⁻ /OH ¹⁻ /OH ⁻¹	1
	(iv)	$2K + 2H_2O \rightarrow 2KOH + H_2$ M1 correct formulae M2 balancing of correct formulae	ALLOW multiples and fractions IGNORE state symbols even if incorrect M2 dep on M1	2
(c)		An explanation that links the following four points M1 giant structure/lattice		4
		M2 strong electrostatic attraction	ALLOW strong (ionic) bonds	
		M3 between (oppositely charged) ions	No M2 or M3 if mention of covalent or metallic bonds /intermolecular forces	
		M4 large amount of energy needed to overcome the forces of attraction/break the bonds		
				Total 1

Question number		Answer	Notes	Marks
4 (a) (i)		propane	spelling must be correct	1
	(ii)	H H H I I I H – C – C – C – H I I I H H H		1
	(iii)	C_nH_{2n+2}	ALLOW upper case N or different letter e.g. x	1
(b)	(i)	shared pair of electrons (between two atoms)	REJECT if between molecules	1
	(ii)	An explanation that links the following three points		3
		M1 C_4H_{10} has larger molecules/longer chain ORA	ALLOW C₄H₁₀ has more carbon (and hydrogen) atoms	
		M2 C₄H ₁₀ has stronger intermolecular forces ORA	ACCEPT forces between molecules	
			ALLOW intermolecular bonds	
		${ m M3}$ more energy needed to separate the molecules /overcome the forces in ${ m C_4H_{10}}$ ORA	No M2 or M3 if implied that covalent bonds break	
(c)	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	REJECT double bond between carbons for both marks	2
		M1 correct repeat unit		
		M2 extension bonds brackets and n	n must be on RHS of bracket and extension bonds do not have to go through brackets	
	(ii)	Any one from		1
		M1 food will not bind to/ bond with the coating	ALLOW coating will not react with the food/ non-	
		M2 hard/tough /long lasting coating	toxic/ not poisonous	
		M3 resistant to heat/ will not melt	ALLOW high melting point	
		M4 inert/ unreactive	F - 115	Total 10

Question number	Answer	Notes	Marks
5 (a) (i)	Any one of the following		1
	M1 bright/white light OR bright/white flame		
	M2 white solid/powder/ash	ALLOW grey solid/powder /ash	
		ALLOW white smoke	
(ii)	$2Mg + O_2 \rightarrow 2MgO$	REJECT charges on Mg and/or O ₂	1
		ACCEPT 2Mg ²⁺ O ²⁻	
		ALLOW multiples and fractions	
		IGNORE state symbols even if incorrect	
(b)	M1 (volume of oxygen =) 100 – 28 OR 72 (cm ³)	Correct answer without working scores 4	4
	M2 (volume of air at start =) 275 + 100 OR 375 (cm ³)	ALLOW ECF throughout	
	M3 72 ÷ 375 x 100 OR 19.2 (%)	Use of 275 gives an answer of 26 scores 3	
	M4 19 (%)	Alternative method	
		M1 (volume of air left=) 275 + 28 OR 303 (cm ³)	
		M2 303 ÷ 375 x 100 OR 80.8 (%)	
		M3 100 – 80.8 OR 19.2	
		M4 19 (%)	
(c) (i)	M1 bubble/pass/add carbon dioxide/gas into limewater		2
	M2 (limewater) turns cloudy/milky	ALLOW white precipitate	
		M2 dependent on mention of limewater	
		REJECT addition of extra reagent for both marks	

(ii)	An explanation that links two of the following three points		2
	M1 carbon dioxide is a greenhouse gas	ACCEPT description of greenhouse effect	
		REJECT reference to the ozone layer for M1	
	M2 (that causes) climate change/ global warming	ACCEPT a result of climate change (e.g. melting of polar icecaps/flooding /wildfires)	
	M3 oceans becoming more acidic	IGNORE reference to acid	
			Total

Question number		Answer	Notes	Marks
6 (a)	(i)	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$		1
	(ii)	carbon dioxide/CO ₂ /gas escapes/is given off OWTTE	IGNORE carbon dioxide is a gas alone	1
	(iii)	to stop acid/liquid/solution leaving flask/spitting out OWTTE	REJECT to stop carbon dioxide/gas escaping	1
(b)	(i)	An explanation that links four of the following points		4
		M1 the curve is steep(est) at the start		
		M2 because the reaction is fast(est) at the start		
		M3 the curve becomes less steep because the reaction slows down		
		M4 the curve levels off/stops going up when the acid has all been used up		
		OR		
		M1 the curve is steep(est) at the start		
		M2 because the (acid) concentration is high(est)	ALLOW there are the most (acid) particles in solution/per unit volume OWTTE	
		M3 the curve becomes less steep as the solution/acid is becoming more dilute	ALLOW the curve becomes less steep as there are fewer acid particles/particles in solution /per unit volume	
		M4 the curve levels off/ stops going up when the acid has all been used up	IGNORE references to energy	
	(ii)	M1 curve starting at the origin and steeper than the original curve		2
		M2 curve levelling off before and at the same level as the original curve		
				Total 9

Question number		Answer	Notes	Marks
7 (a)		heat (energy) is given out OWTTE	ACCEPT thermal energy is given out	1
			ACCEPT thermal energy store of mixture decreases	
(b) ((i)	C displacement		1
		A is incorrect as it is not a combustion reaction B is incorrect as it is not a decomposition reaction D is incorrect as it is not a neutralisation reaction		
((ii)	M1 the (blue) colour fades/ solution turns (from blue) to colourless		2
		M2 pink-brown/pink coating (on zinc)	ALLOW any combination of pink, orange, brown	
((iii)	silver is less reactive/ lower in the reactivity series than copper ORA	ALLOW silver cannot displace copper	1
(c)		M1 temperature change = 37.0 − 20.5 OR 16.5 (°C)	correct answer without working scores 4	4
		$M2 Q = 50.0 \times 4.2 \times 16.5$	ALLOW ECF on M1	
		M3 3465 (J)		
		M4 3.465 (kJ)	ALLOW ECF on M3	
			ALLOW any number of sig figs except 1	
				Total 9