Mark Scheme (Results)

November 2020
Pearson Edexcel International GCSE In Science (Single Award) (4SSO) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code 4SSO_1C_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	six circles randomly arranged	REJECT if any circles touching IGNORE number of circles, as long as well spaced	1 Grad
(b)	$\mathrm{X}=$ sublimation $\mathrm{Y}=$ melting $\mathrm{Z}=$ boiling	ALLOW subliming	3 Clerical
(c) (i)	$\mathrm{H}_{2} \mathrm{O}$ (l) $\rightarrow \mathrm{H}_{2} \mathrm{O}$ (s)	Both state symbols are required for the mark. Must be in the correct order. ALLOW capital L/S	1 clerical
(ii)	(impure ice) melts over a range of temperatures OR (impure ice) does not have a sharp melting point.	ALLOW the melting point (of the impure ice) is lower IGNORE refs to time	1 Gradad to melt

Question number	Answer	Notes	Marks
2 (a) $\begin{array}{ll}\text { (i) } \\ & \\ & \\ & \text { (ii) }\end{array}$	M	ALLOW F	$\begin{gathered} 1 \\ \text { Clerical } \end{gathered}$
	T	ALLOW Rb	$\stackrel{1}{\text { Clerical }}$
	LM ${ }_{2}$	ALLOW BeF 2	$\begin{gathered} 1 \\ \text { Grad } \end{gathered}$
		ALLOW LM ${ }_{2} / \mathrm{BeF}_{2}$ as the product of an equation, even if unbalanced	
	L and Q have the same number of outer shell electrons / two outer shell electrons	ALLOW L and Q form ions with the same charge / +2 charge ALLOW both in the same Group / Group 2	$\begin{gathered} 1 \\ \operatorname{Exp} \end{gathered}$
(b) $\begin{aligned} & \text { (i) } \\ & \\ & \text { (ii) }\end{aligned}$	isotopes		1 Clerical
	$\text { M1 } \quad((24 \times 79.0)+(25 \times 10.0)+(26 \times 11.0)) \div 100$		$\begin{gathered} 2 \\ \operatorname{Exp} \end{gathered}$
	M2 24.3 COMMENT: ECF only on slips in data, not on incorrect expressions	Correct answer to 1 decimal place with or without working scores 2 marks IGNORE any units An answer of 24 without any working scores 0 .	
		Total for question 2	7

(ii)	Dye C is more soluble in solvent X	ALLOW dye C travels further up the paper (with solvent X)	1 Grad
	Total for question 3		

Question number	Answer	Notes	Marks
4 (a)	74		$\begin{gathered} 1 \\ \text { Cler } \end{gathered}$
(b) (i) (ii)	M1 flame test M2 (flame colour is) red M1 add (dilute) hydrochloric acid M2 bubble the gas $/ \mathrm{CO}_{2}$ produced through limewater / test the gas/ CO_{2} with limewater M3 which turns cloudy / milky / white precipitate	ALLOW any description of a flame test ALLOW crimson or crimson red M2 is dependent on M1 ALLOW any acid IGNORE refs to concentration REJECT additional reagents ALLOW calcium hydroxide M3 is dependent on use of limewater	$\stackrel{2}{2}$ Grad $\begin{gathered} 3 \\ \operatorname{Exp} \end{gathered}$
4 (c)	$\mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2}$		$\begin{gathered} 1 \\ \text { Grad } \end{gathered}$
		Total for question 4	7

(c) (i)	Any two from:		ALLOW amount of hydrochloric acid	$\begin{gathered} 2 \\ \text { Grad } \end{gathered}$
	M1	concentration of hydrochloric acid		
	M2 M3	volume of hydrochloric acid temperature		
(ii)		(powder has a) greater surface area		$\begin{gathered} 2 \\ \operatorname{Exp} \end{gathered}$
		therefore there are more collisions (per unit time)		
(iii)	Any one from:			
		the graph would be steeper	ALLOW higher gradient / line decreases faster	$\begin{gathered} 1 \\ \operatorname{Exp} \end{gathered}$
		the line would get to $146 \mathrm{~g} /$ flatten off / finish after a shorter time		
			REJECT any reference to more carbon dioxide being produced.	
			Total for question 5	13

6 (a) (i) (ii) (iii) (iv)	M1 (molecules / compounds containing) hydrogen and carbon (atoms) M2 only propane $\mathrm{C}_{2} \mathrm{H}_{6}$ M1 add bromine water M2 decolourised	M2 dep on M1 or near miss REJECT bromine or bromide or bromide water ALLOW turns (from orange / yellow to) colourless M2 dependent on M1 unless M1 is bromine, bromide or bromide water	$\begin{gathered} 2 \\ \text { grad } \\ \\ 1 \\ \text { Clerical } \\ \\ 1 \\ \text { Grad } \\ 2 \\ \text { Exp } \end{gathered}$
(b) (i) (ii)	M1 structure is simple molecular / simple covalent M2 intermolecular forces (of attraction) are weak M3 and require little energy to overcome / break The intermolecular forces in R are stronger (than the intermolecular forces in S) OR reverse argument	ALLOW intermolecular bonds, if clearly not covalent bonds ALLOW low / less energy Any reference to breaking covalent bonds do not award M2 and M3. ALLOW R has a higher Mr / surface area than S / has more Cs and Hs ALLOW R has stronger bonds / more bonds than S if breaking bonds is mentioned in (b)(i)	3 Exp clip

Question number	Answer	Notes	Marks
6 (c) (i)	Any one from:		1

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

