

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE
In Chemistry (Single Award) (4SS0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number P70943A
Publications Code 4SS0_1C_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Ans	wer	Notes	Marks
1 (a)	Relative 1 mass	Electron 1/1700 to 1/2000 (or 0.0005 to 0.0006)	all 4 correct = 2 marks 2 or 3 correct = 1 mark 0 or 1 correct = 0 marks ALLOW +1 for relative mass of proton but	2
	Relative (+)1 charge	-1	REJECT -1	
(b) (i)	Atomic number of atom	7	1 mark for each correct row	3
	Mass number of atom	15		
	Group number of element in Periodic Table	5		
(ii)	nitrogen			1
(iii)	3-		ACCEPT -3, N ³⁻ , N ⁻³	1
			Total for question	1 = 7 marks

Question number	Answer	Notes	Marks
2 (a) (i)	(simple) distillation	REJECT fractional distillation	1
(ii)	M1 a way of cooling side arm/test tube	ALLOW any method of cooling eg beaker of ice around beaker ALLOW use a condenser	2
	M2 (so) water vapour/steam cools/condenses		
(b) (i)	M1 correct measurement of distance moved by the spot common to A and C	ALLOW 2.2-2.5	3
	M2 correct measurement of distance moved by the solvent	ALLOW 7.3-7.5	
	M3 use and evaluation of		
	R _f = <u>distance moved by spot</u> distance moved by solvent	eg $\frac{2.3}{7.4}$ = 0.31	
		ALLOW 1-4 sig fig but must be correctly rounded ALLOW ECF from M1 M2	
		as long as only one spot distance in M1 and $R_f < 1$	
(ii)	use a different solvent	ALLOW any named solvent e.g. ethanol	1
Total for question 2 = 7			

Questi numb		Answer	Notes	Marks
3 (a)	(i)	evaporation	ALLOW evaporating / boiling	1
	(ii)	condensation	ALLOW condensing	1
	(iii)	sublimation	ALLOW subliming	1
(b)	(i)	ring of solid drawn closer to the hydrochloric acid end of the tube		1
	(ii)	diffusion	ALLOW diffusing	1
	(iii)	$NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$		1
	(iv)	Any two from:		2
		M1 (gas particles) move in random directions OWTTE	ALLOW do not travel in straight lines	
		M2 (gas particles) collide with air / other particles	ALLOW air / other particles slow them down	
		M3 (gas particles) collide with the walls / sides (of the tube) OWTTE		
			IGNORE any references to rate of reaction	
			Total for question	3 = 8 marks

4 (a)	al accident and that made where		
ι (α)	glowing splint relights		1
(=)	M1 filter off the solid M2 dry the solid M3 same mass of solid / 1 g of solid	ALLOW decant/pour off liquid	3
	M1 (smooth) curve above original curve M2 levels out at 40 cm ³ (before 150 sec)	Total for question	2

Question number	Answer	Notes	Marks
5 (a)	Test for sodium ions		5
	M1 do a flame test	ALLOW any description of a flame test	
	M2 yellow flame	ALLOW orange or yellow-orange	
	Test for carbonate ions		
	M3 add acid	ALLOW any named acid	
	M4 (bubble the) gas/carbon dioxide into limewater	ALLOW aqueous calcium hydroxide	
		M4 dep on M3	
	M5 which turns cloudy	ALLOW milky / white precipitate	
		M5 dep on mention of limewater	
(b)	M1 giant (ionic structure/lattice)		3
	M2 strong forces/attraction between (oppositely charged) ions	ALLOW strong ionic bonds but REJECT if between atoms/molecules	
	M3 large amount of (thermal/heat) energy to overcome the forces/attraction	ACCEPT large amount of (thermal/heat) energy required to break the bonds IGNORE more energy	
		No M3 if reference to overcoming / breaking intermolecular forces /covalent bonds	
		Total for question	5 = 8 marks

Question number	Answer	Notes	Marks
6 (a)	M1 magnesium loses two electrons	ACCEPT magnesium becomes 2.8	2
	M2 (each of two) chlorine atoms gains one electron	ACCEPT (each of two) chlorine atoms becomes 2.8.8	
		M1 and M2 can be scored from correct diagrams	
		No M1 M2 if reference to covalent bonding or sharing electrons	
(b) (i)	M1 $\frac{(35 \times 70) + (37 \times 30)}{100}$		2
	M2 35.6(0)	correct answer of 35.6(0) with or without working scores 2	
(ii)	(both isotopes have) the same electron configuration / arrangement	ALLOW (both isotopes have) the same number of electrons (in their outer shell)	1
(c) (i)	M1 exothermic		2
	M2 the temperature increases	ALLOW heat energy is given out	
(ii)	Any one from:		1
	polystyrene is a (good) insulator	IGNORE references to safety	
	to reduce/prevent heat loss (to the surroundings)	surcey	
(iii)	M1 ΔT = 27.5		3
	M2 100 × 4.2 × 27.5	ALLOW ecf from M1	
	M3 = 11 550	ALLOW 2 or more significant figures	
		ALLOW ecf from M2	
		Correct answer 11 550 with or without working scores 3	
		115.5 scores 2	
		Total for question 6	= 11 marks

Question	Answer	Notes	Marks
number 7 (a)	M1 X is darker in colour than kerosene ORA		3
()	M2 V has higher heiling point than large and ODA		
	M2 X has higher boiling point than kerosene ORA		
(b) (i)	M3 X is more viscous than kerosene ORA M1 3 CO ₂ + 9 H ₂ O		2
(b) (i)			
	M2 10 O ₂	M2 dep on M1	
(ii	carbon monoxide reduces the capacity of the blood to transport oxygen OWTTE	ACCEPT correct references to haemoglobin / carboxyhaemoglobin	1
			3
(iii	An explanation including any three of the following:		
	M1 (common impurity in fuels is) sulfur		
	M2 (sulfur) burns/combusts/reacts (in air/ oxygen) to form sulfur dioxide/SO ₂		
	M3 sulfur dioxide/SO ₂ dissolves in/reacts with rain/water (to form)		
	M4 acid rain		
(c) (i)	M1 single bond between the carbons and each carbon single bonded to two hydrogens		2
	M2 two extension bonds and n after the bracket	M2 dep on M1	
(ii	M1 poly(ethene)		
	is unreactive/does not react/inert		2
	M2 (so) non-biodegradable/does not decompose/does not break down (in landfill sites)	ALLOW takes many years or a long time to decompose/break down OWTTE ALLOW reference to space is limited in landfill sites OWTTE	
		Total for que	stion 7 = 13