Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE

In Chemistry (Single Award) (4SS0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number P70943A
Publications Code 4SSO_1C_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer		Notes all 4 correct $=2$ marks 2 or 3 correct $=1$ mark 0 or 1 correct $=0$ marks ALLOW +1 for relative mass of proton but REJECT -1	Marks
(a)			all 4 correct = 2 marks 2 or 3 correct $=1$ mark 0 or 1 correct $=0$ marks ALLOW +1 for relative mass of proton but REJECT -1	2
	Proton	Electron		
	Relative 1 mass	$\begin{array}{\|l\|} \hline 1 / 1700 \text { to } \\ 1 / 2000 \text { (or } \\ 0.0005 \text { to } \\ 0.0006 \text {) } \\ \hline \end{array}$		
	Relative charge $(+) 1$	-1		
(b) (i)	Atomic number of atom	7	1 mark for each correct row	3
	Mass number of atom	15		
	Group number of element in Periodic Table	5		
(ii)	nitrogen			1
(iii)	3-		ACCEPT -3, $\mathrm{N}^{3-}, \mathrm{N}^{-3}$	1
			Total for question	= 7 mar

Question number	Answer	Notes	Marks
$2 \quad \text { (a) } \quad \text { (i) }$ (ii)	(simple) distillation M1 a way of cooling side arm/test tube M2 (so) water vapour/steam cools/condenses	REJECT fractional distillation ALLOW any method of cooling eg beaker of ice around beaker ALLOW use a condenser	1 2
(b) (i) (ii)	M1 correct measurement of distance moved by the spot common to A and C M2 correct measurement of distance moved by the solvent M3 use and evaluation of $\mathrm{R}_{\mathrm{f}}=\frac{\text { distance moved by spot }}{\text { distance moved by solvent }}$ use a different solvent	ALLOW 2.2-2.5 ALLOW 7.3-7.5 $\text { eg } \frac{2.3}{7.4}=0.31$ ALLOW 1-4 sig fig but must be correctly rounded ALLOW ECF from M1 M2 as long as only one spot distance in M1 and $\mathrm{R}_{\mathrm{f}}<1$ ALLOW any named solvent e.g. ethanol	3
Total for question 2 = 7			

Question number	Answer	Notes	Marks
3 (a) (i) (ii) (iii)	evaporation condensation sublimation	ALLOW evaporating / boiling ALLOW condensing ALLOW subliming	1 1 1
(b) (i) (ii) (iii) (iv)	ring of solid drawn closer to the hydrochloric acid end of the tube diffusion $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ Any two from: M1 (gas particles) move in random directions OWTTE M2 (gas particles) collide with air / other particles M3 (gas particles) collide with the walls / sides (of the tube) OWTTE	ALLOW diffusing ALLOW do not travel in straight lines ALLOW air / other particles slow them down IGNORE any references to rate of reaction	1 1 1 2
Total for question 3 = 8 marks			

Question number	Answer	Notes	Marks
4 (a)	glowing splint relights		1
(b)	M1 filter off the solid M2 dry the solid M3 same mass of solid / 1 g of solid	ALLOW decant/pour off liquid	3
(c)	M1 (smooth) curve above original curve M2 levels out at $40 \mathrm{~cm}^{3}$ (before 150 sec)		2
Total for question 4 = 6 marks			

Question number	Answer	Notes	Marks
5 (a)	Test for sodium ions M1 do a flame test M2 yellow flame Test for carbonate ions M3 add acid M4 (bubble the) gas/carbon dioxide into limewater M5 which turns cloudy	ALLOW any description of a flame test ALLOW orange or yellow-orange ALLOW any named acid ALLOW aqueous calcium hydroxide M4 dep on M3 ALLOW milky / white precipitate M5 dep on mention of limewater	5
(b)	M1 giant (ionic structure/lattice) M2 strong forces/attraction between (oppositely charged) ions M3 large amount of (thermal/heat) energy to overcome the forces/attraction	ALLOW strong ionic bonds but REJECT if between atoms/molecules ACCEPT large amount of (thermal/heat) energy required to break the bonds IGNORE more energy No M3 if reference to overcoming / breaking intermolecular forces /covalent bonds	3
Total for question 5 = 8 marks			

Question number	Answer	Notes	Marks
6 (a)	M1 magnesium loses two electrons M2 (each of two) chlorine atoms gains one electron	ACCEPT magnesium becomes 2.8 ACCEPT (each of two) chlorine atoms becomes 2.8.8 M1 and M2 can be scored from correct diagrams No M1 M2 if reference to covalent bonding or sharing electrons	2
(b) (i) (ii)	$\begin{array}{ll} \text { M1 } & \frac{(35 \times 70)+(37 \times 30)}{100} \\ \text { M2 } & 35.6(0) \end{array}$ (both isotopes have) the same electron configuration / arrangement	correct answer of 35.6(0) with or without working scores 2 ALLOW (both isotopes have) the same number of electrons (in their outer shell)	2
(c) (i) (ii) (iii)	M1 exothermic M2 the temperature increases Any one from: polystyrene is a (good) insulator to reduce/prevent heat loss (to the surroundings) $M 1 \Delta T=27.5$ $\text { M2 } 100 \times 4.2 \times 27.5$ $M 3=11550$	ALLOW heat energy is given out IGNORE references to safety ALLOW ecf from M1 ALLOW 2 or more significant figures ALLOW ecf from M2 Correct answer 11550 with or without working scores 3 115.5 scores 2	2 1 3
Total for question 6 = 11 marks			

Question number	Answer	Notes	Marks
7 (a)	M 1 X is darker in colour than kerosene ORA M2 X has higher boiling point than kerosene ORA M 3 X is more viscous than kerosene ORA		3
(b) (i) (ii) (iii)	M1 $3 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$ M2 $10 \mathrm{O}_{2}$ carbon monoxide reduces the capacity of the blood to transport oxygen OWTTE An explanation including any three of the following: M1 (common impurity in fuels is) sulfur M2 (sulfur) burns/combusts/reacts (in air/ oxygen) to form sulfur dioxide/ SO_{2} M3 sulfur dioxide/ SO_{2} dissolves in/reacts with rain/water (to form) M4 acid rain	M2 dep on M1 ACCEPT correct references to haemoglobin / carboxyhaemoglobin	2 1 3
(c) (i) (ii)	M1 single bond between the carbons and each carbon single bonded to two hydrogens M2 two extension bonds and n after the bracket M1 poly(ethene) is unreactive/does not react/inert M2 (so) non-biodegradable/does not decompose/does not break down (in landfill sites)	M2 dep on M1 ALLOW takes many years or a long time to decompose/break down OWTTE ALLOW reference to space is limited in landfill sites OWTTE	2 2
Total for question $7=13$			

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

