## Pearson Edexcel

## Mark Scheme (Results)

## January 2023

Pearson Edexcel International GCSE in Physics (4PH1) Paper 1P and Science (Double Award) (4SD0) Paper 1P

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P71896A
Publications Code 4PH1_1P_MS_2301
All the material in this publication is copyright
© Pearson Education Ltd 2023

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 1 (a) | idea that material returns to its original shape / length; when the load / force is removed; | condone mass / weight for load | 2 |
| (b) | axes labelled "extension" and "load"/"force"; <br> straight line of positive gradient drawn throughout; <br> line passes through origin; | ignore units <br> ignore orientation of axes <br> judge by eye <br> condone curve at end of line if clear indication that Hooke's law does not apply for that part of the line e.g. limit of proportionality marked at end of straight section <br> allow full marks for axes labelled "length" and "load"/"force" if line intersects length axis above zero | 3 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 2 (a) | N on left pole and S on right pole; | allow north for N and south for S ignore attempt at labelling poles on far sides of magnets | 1 |
| (b) | idea that steel is a hard magnetic material; | allow steel keeps its magnetism/magnetic field allow steel is hard to demagnetise | 1 |
| (c) | any two from: <br> MP1. (field) lines are straight; <br> MP2. (field) lines are evenly spaced; <br> MP3. (field) lines are parallel; | allow equivalent statements | 2 |
| (d) <br> (i) <br> (ii) | idea that wire cuts magnetic field lines; <br> any two from: <br> MP1. move wire faster; <br> MP2. move magnets closer together; <br> MP3. use stronger magnets; <br> MP4. turn wire into a coil; | allow wire passes through field lines ignore wire interacting with field lines <br> ignore "bigger" magnets ignore more turns on the coil | 1 2 |

Total for Question 2 = 7 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii)
\end{tabular} \& ```
work (done) = force }\times\mathrm{ distance (moved in direction of
force);
substitution;
rearrangement;
evaluation;
e.g.
41000 = force }\times1
force = 41000 / 15
(force =) 2700(N)
``` \& \begin{tabular}{l}
allow standard symbols and rearrangements e.g. \(W=F \times s\) allow d for distance ignore units \\
-1 for POT error \\
allow correct answers to more significant figures e.g. 2733.3...(N)
\end{tabular} \& 1

3 <br>

\hline (b) (i) \& | diagram showing one input and two outputs; |
| :--- |
| input and outputs appropriately labelled; |
| approximately correct scale; | \& arrows can be in any orientation e.g. both useful and wasted arrows drawn horizontally allow input, total, chemical for initial arrow useful (output), mechanically for narrower output wasted (output), thermal for wider output wasted output must be consistently at least twice as wide as useful output arrow and they should sum to approximately the width of the input \& 3 <br>

\hline
\end{tabular}

| (ii) | one mark for each correct row;;; |  | reject mark for that row if more than one tick drawn |  | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Energy store | Decreases | Increases | Stays the same |  |
|  | chemical store of petrol in winch | $\checkmark$ |  |  |  |
|  | gravitational store of lorry |  | $\checkmark$ |  |  |
|  | kinetic store of lorry |  |  | $\checkmark$ |  |
|  | thermal store of surroundings |  | $\checkmark$ |  |  |

Total for Question 3 = 11 marks


| (c) | gamma; <br> idea that all beta/alpha would be absorbed by lead <br> / only gamma can penetrate through (thin) lead; | 2 |
| :--- | :--- | :--- | :--- |

Total for Question 4 = 15 marks

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 (a) | B (condition of the road); <br> A is incorrect because consumption of alcohol increas <br> C is incorrect because thinking distance is determined <br> $D$ is incorrect because tiredness increases reaction tim | action time speed | 1 |
| (b) | $B$ (ice on the road); <br> A is incorrect because reaction time does not affect brak C is incorrect because more powerful brakes would de <br> $D$ is incorrect because tyres with more grip would decr | ing distance ease the braking distance ase the braking distance | 1 |
| (c) | ```idea that stopping distance = thinking distance + braking distance; correct reading of either distance; correct evaluation; e.g. stopping distance = thinking distance + braking distance thinking distance = 10.0 m / braking distance = 26.5 m stopping distance =(10.0 + 26.5) = 36.5 (m)``` | stated or implied allow 26.0-27.0 (m) for braking distance allow 10.0-10.5 (m) for thinking distance allow 36.0-37.5 (m) | 3 |
| (d) <br> (i) <br> (ii) | (average) speed = distance (moved) / time (taken); <br> suitable pair of readings taken from graph; <br> rearrangement of formula; evaluation; <br> e.g. <br> thinking distance $=15 \mathrm{~m}$ when speed $=30 \mathrm{~m} / \mathrm{s}$ <br> time $=$ distance $/$ speed <br> (time $=15 / 30=$ ) 0.50 (s) | allow standard symbols and rearrangements e.g. $\mathrm{t}=\mathrm{s} / \mathrm{v}$ <br> allow s or d for distance allow v or s for speed <br> i.e. $(30,15),(20,10)$, $(10,5)$ etc. <br> allow any answer in range 0.40-0.60 (s) | $1$ <br> 3 |


| (e) | correct braking distance reading from graph; <br> substitution into $v^{2}=u^{2}+2 \times a \times s ;$ <br> rearrangement; <br> evaluation; | allow 53 seen anywhere <br> in working | 4 |
| :--- | :--- | :--- | :--- |
|  | e.g. <br> braking distance $=53 \mathrm{~m}$ <br> $0^{2}=30^{2}+[2 \times \mathrm{a} \times 53]$ <br> $\mathrm{a}=(-) 900 / 106$ <br> $(\mathrm{a}=)(-) 8.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ | final answer of $6.6\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ <br> (using stopping distance <br> instead of braking <br> distance) scores 3 marks <br> final answer of $30\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ <br> $($ using thinking distance <br> instead of braking <br> distance) scores 3 marks |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 6 (a) | D (waves transfer energy and information without trans <br> A is incorrect because waves do not transfer matter <br> $B$ is incorrect because waves do transfer energy and <br> C is incorrect because waves do transfer information | sferring matter); <br> formation | 1 |
| (b) (i) <br> (ii) | ray drawn such that it shows correct change of direction into the core i.e. bending towards normal; e.g. | arrow on ray is not required <br> allow recognisable spelling reject if spelling implies reflection | $1$ <br> 1 |
| (c) | (total internal) reflection; (because) core has higher refractive index than air; <br> (because) angle (of incidence) is greater than critical angle; | allow core is more (optically) dense than air / light travels from a dense to a less dense medium | 3 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| $7 \quad \text { (a) }$ <br> (ii) | variable resistor; <br> idea that it allows the current / voltage (across lamp) to be varied; | allow rheostat <br> ignore references to changing resistance | 1 1 |
| (b) | $\text { charge }=\text { current } \times \text { time; }$ | allow standard symbols and rearrangements e.g. $\mathrm{Q}=\mathrm{I} \times \mathrm{t}$ <br> reject $\mathrm{C}, \mathrm{c}$ for current and charge | 1 |
|  | 0.48 (A); |  | 1 |
|  | substitution; <br> evaluation; <br> unit; | allow ecf from (ii) <br> mark independently | 3 |
|  | $\begin{aligned} & \text { e.g. } \\ & \text { charge }=0.48 \times 30 \\ & (\text { charge }=\text { ) } 14 \\ & \text { coulombs } / C \end{aligned}$ | allow 14.4 ignore As |  |
|  | ```substitution into E = V }\timesI\timest\mathrm{ ; rearrangement; evaluation;``` | allow ecf from (ii) | 3 |
|  |  | allow alternative method involving calculating charge transferred, then using $\mathrm{Q}=\mathrm{It}$ |  |
|  | e.g. $\begin{aligned} & 250=10 \times 0.48 \times \text { time } \\ & \text { time }=250 / 4.8 \\ & \text { (time }=) 52(\mathrm{~s}) \end{aligned}$ | allow 52.08...(s) |  |
|  | curve drawn of similar shape to existing but through $180^{\circ}$ rotation into negative quadrant of graph; curve starts at $(0,0)$ and finishes at ( $-12,-0.5$ ); | DOP | 2 |
| (c) | any two from: | allow description of electron movement for current | 2 |
|  | MP1. idea that current changes direction; <br> MP2. LED only allows current in one direction; <br> MP3. LED will not light up when current in reverse direction; | allow RA |  |

Total for Question 7 = 14 marks

| Question <br> number | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| $8 \quad$ (a) | Rigel; <br> (because) idea that colour depends on surface <br> temperature; | ignore links between mass <br> and temperature | 2 |
| (b) | any six from: <br> for both stars: <br> MP1. both stars began in a nebula; <br> MP2. both stars were protostars; <br> MP3. both stars were/are main sequence stars; <br> for Rigel: <br> MP4. Rigel is a high mass star; <br> MP5. Rigel is/will become a red supergiant; <br> MP6. Rigel will become a supernova; <br> MP7. Rigel will become a neutron star; <br> for Sirius: <br> MP8. Sirius is a low mass star; <br> MP9. Sirius will become a red giant; <br> MP10. Sirius will (eventually) become a white <br> dwarf; | accept blue supergiant <br> nebula | condone black hole |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 9 (a) (i) <br> (ii) | amplitude in the range of 0.8-0.9 (cm); <br> wavelength in the range $3.9-4.0(\mathrm{~cm})$; |  | 1 <br> 1 |
| (b) <br> (i) <br> (ii) | radio (waves); <br> substitution; <br> rearrangement; evaluation; <br> e.g. <br> $3.0 \times 10^{8}=$ frequency $\times 0.027$ <br> (frequency $=$ ) $3.0 \times 10^{8} / 0.027$ <br> (frequency =) $1.1 \times 10^{10}(\mathrm{~Hz})$ | allow radio frequency reject radioactive (waves), radiation (waves) <br> allow wavelength substitution in cm or m <br> -1 if POT error <br> allow $1.11 \ldots \times 10^{10}(\mathrm{~Hz})$ | $1$ $3$ |
| (c) <br> (i) <br> (ii) | 68; <br> relationship is not inversely proportional; <br> correct calculation of constant for one pair of readings <br> correct calculation of constant for second pair of readings; statement to show meter reading $\times$ distance is not constant; | allow conclusion is incorrect | 1 <br> 4 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 10 (a) | line decreases from 70; other line increases from 5; both are correctly curved; lines become asymptotic at an intermediate temperature; | DOP <br> reject if intermediate temperature closer to 70 than 5 | 4 |
| (b) | any 4 from: <br> MP1. hot water loses energy / cold water gains energy; <br> MP2. (thermal) energy is transferred from hot to cold water; <br> MP3. by conduction (through the metal); <br> MP4. idea that energy transfer stops when thermal equilibrium is reached; <br> MP5. some (thermal) energy lost (to surroundings) by convection/evaporation/radiation; <br> MP6. little/no (thermal) energy is transferred out through the insulated plastic cup; | allow cold water gains heat from hot water <br> allow equivalent statements for thermal equilibrium e.g. same temperature | 4 |
| (c) | (energy transfer by) convection/radiation decreases; idea that equilibrium temperature will be higher; <br> idea that time taken to cool (to room temperature) will be longer; | allow reference to evaporation condone no change to intermediate temperatures | 3 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| (a) <br> (i) <br> (ii) | idea that atoms collide with (all) walls of the container; force is exerted on walls (during each collision); pressure is force on an area; <br> any two from: <br> MP1. particles move slower; <br> MP2. particles collide with walls less frequently; <br> MP3. force on container decreases; | allow $\mathrm{p}=\mathrm{F} / \mathrm{A}$ <br> allow KE decreases / eq allow less often, less times per second etc. allow particles collide less hard with walls | 3 2 |
| (b) | ```substitution into KE = 1/2 }\times\textrm{m}\times\mp@subsup{\textrm{v}}{}{2}\mathrm{ ; evaluation of KE; rearrangement of given formula; evaluation of kelvin temperature; e.g. KE = 0.5 * 5.0 < 10-27 \times 73 2 KE = 1.3 > 10-23 (J) T=KE / 2.1 < 10-23 (T =) 0.63(K)``` | allow ecf from incorrect KE <br> allow $1.33225 \times 10^{-23}(\mathrm{~J})$ <br> allow answers in the range of 0.61-0.64 (K) | 4 |

Total for Question 11 = 9 marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

