Pearson
 Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE

In Physics Science (Double Award) (4SD0)
Paper 1PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P70712A
Publications Code 4SDO_1PR_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Total for Question 1 = 5 marks

Question number	Answer	Notes	Marks
2 (a)	D (ultraviolet); A is incorrect because frequencies lower than visib B is incorrect because frequencies lower than visib C is incorrect because frequencies lower than visib	ight are non-ionising ight are non-ionising ight are non-ionising	1
(b)	one use for x-rays; e.g. taking photos or detecting of (broken) bones, internal structures (of objects), one use for gamma rays; e.g. radiotherapy, sterilising medical equipment, reference to tracing, airport scanning of luggage, irradiating food (for preservation)	allow treating cancer / sterilising medical equipment allow treating cancer	2
(c) (i) (ii)	speed $=$ frequency \times wavelength; substitution; rearrangement; evaluation; e.g. $3.0 \times 10^{8}=2.8 \times 10^{19} \times$ wavelength wavelength $=$ speed $/$ frequency (wavelength =) $1.1 \times 10^{-11}(\mathrm{~m})$	allow standard symbols and rearrangements e.g. $\lambda=v / f$ condone s for speed -1 for POT error allow 1.07... $\times 10^{-11}(\mathrm{~m})$	1 3
(d)	B; A is incorrect because it shows an exponential relat C is incorrect because it shows a proportional relat D is incorrect because it shows no relationship	ship ship	1

Total for Question 2 = 8 marks

Question number	Answer	Notes	Marks
(a)	idea that like poles repel;		1
(b)	it is made of plastic / idea that plastic is non- magnetic;	correct shape e.g. lines deviating away from both magnets; correct direction e.g. any arrows must face towards poles;	reject if any field lines touch or cross except at pole
(c)	(d)	reading will increase; (because) magnetic field / (repulsive) force will be stronger;	allow statement to the effect that magnet B will be pushed down more (by magnet A)
(ii)	reading will decrease; (because) magnets will now attract; allow reading will become negative / zero; allow statement to the effect that magnet B will be pulled upwards	2	

Total for Question 3 = 8 marks

Question number	Answer	Notes	Marks
4 (a)	both have magnitude; (only) vectors have a direction; (b) power; temperature; charge;	if 4 circled, 2 marks max. if 5-6 circled, 1 mark max. no marks if all circled	2
(c)	(resultant force =) 6 (N); (direction =) left;	ignore sign allow indication of same direction as 8 (N) force condone West	3

Total for Question 4 = 7 marks

Question number	Answer	Notes	Marks
(a)	idea that 15\% of total energy; is transferred usefully;	allow reverse argument e.g. 85% of total energy is wasted	2
(b)	correct efficiency read from graph; substitution into efficiency formula; rearrangement; evaluation; e.g. 90% or 0.9 seen in working $0.9=6.0 /$ total energy input total energy input = useful energy / efficiency (total energy input =) 6.7 (kJ)	allow ecf from incorrect efficiency	allow working in J or kJ

Total for Question 5 = 12 marks

Question number	Answer	Notes	Marks		
7 (a)	any five from MP1-MP7: apparatus: MP1. method of creating thin beam of light; MP2. protractor; method: MP3. draw round the block; MP4. shine light into the block at an angle to the normal;	allow marking points from diagram	e.g. laser, ray box etc. ignore torch		
MP5. mark incident and refracted rays;					
MP6. measure angles from the normal;					
MP7. repeat for different angles of incidence;					
PLUS	hoxpressed				
MP8. graph of sin(i) and sin(r) with n found from					
gradient					
optical fibres;					
named prismatic use e.g. cats eye reflector,					
binoculars, periscope etc;				\quad	allow simple use of
:---					
(b)					

Total for Question 7 = 8 marks

Question number	Answer	Notes	Marks
$8 \quad \text { (a) (i) }$ (ii)	```reflection; substitution into speed = distance / time; rearrangement; evaluation of correct total distance; halved to find distance to fish; e.g. 1500 = distance / 0.043 distance = speed }\times\mathrm{ time (distance =) 64.5 (distance = 64.5 \div2) = 32(m)```	ignore units condone incorrect conversion of time from 43 ms i.e. 43 , $43 / 60,43 \times 1000,43 \times 60$ accept wherever applied i.e. to the time or to the distance travelled. 64.5, 65 = 3 marks (no halving) 32250 etc $=3$ marks (POT) 64500 etc $=2$ marks (POT and no halving)	
(b) (i) (ii)	$3.0 \pm 0.5(\mathrm{~cm}) ;$ any three from: MP1. all frequencies show reduction in amplitude or intensity with distance; MP2. this reduction is non-linear; MP3. penetration decreases with increasing frequency; MP4. use of data from graph to justify MP3;	accept ' 3 ' ignore 'inverse proportion' condone '(negative) exponential' however expressed e.g. 2 MHz penetrates more than 4 MHz which penetrates more than 10 MHz e.g. relative values at a given distance or distances at which the frequencies are at a given value	1 3

Question number	Answer	Notes	Marks
9 (a)	LED drawn on branch of circuit containing only R_{1}; LED drawn in the correct orientation;		2
(b) (i) (ii)	correct ammeter symbol drawn on main branch of circuit and in series with cell; voltage across R_{2} is the same / 4.5 V ; (because) they are in parallel;	allow higher level answers in terms of energy transferred per unit charge	1 2
(c) (i) (ii) (iii)	$\text { energy (transferred) }=\text { charge } \times \text { voltage; }$ substitution; rearrangement; evaluation; e.g. $4.1=$ charge $\times 4.5$ (charge =) $4.1 / 4.5$ (charge =) 0.91 (C) idea that a voltmeter is needed; voltmeter should be connected across / in parallel (with R_{2}); suitable means of varying circuit current described;	allow standard symbols and rearrangements e.g. $\mathrm{Q}=\mathrm{E} / \mathrm{V}$ reject C for charge allow 0.911...(C) e.g. changing number of cells, using a variable power supply, adding variable resistor to the circuit	1 3 3

Total for Question 9 = 12 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
10 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
substitution into \(\mathrm{a}=\Delta \mathrm{v} / \mathrm{t}\); \\
evaluation to 3 or more s.f.; \\
e.g. \\
acceleration \(=(4.20-1.45) / 0.286\) \\
(acceleration \(=\)) \(9.62\left(\mathrm{~m} / \mathrm{s}^{2}\right)\) \\
idea that air resistance / friction also acts on ball; which opposes the ball's weight; \\
substitution into \(v^{2}=u^{2}+2 \times a \times s\); \\
rearrangement; \\
evaluation; \\
e.g.
\[
\begin{aligned}
\& 4.20^{2}=1.45^{2}+(2 \times 9.6 \times s) \\
\& s=\left(v^{2}-u^{2}\right) / 2 a \\
\& (s=) 0.809(m)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
allow drag allow idea that frictional force is upwards whilst weight is downwards allow idea that resultant force is less that weight ignore idea of reaction time / other human errors allow use of \(a=9.6,9.8,9.81\) or 10 \\
reject 'change in speed \(\times\) time' giving 0.78(65) as incorrect physics allow answers using correct average velocity. \\
allow range 0.78-0.81 (m)
\end{tabular} \& 2

2
2
3

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) | \& | suitable scale on both axes; all points plotted correctly to nearest half square; |
| :--- |
| smooth curve drawn with an even distribution of data points either side; |
| gradient of graph is equal to the speed / velocity of the ball; gradient is increasing (as time increases); |
| speed / velocity is increasing (as time increases); | \& | ECF candidate plotting |
| :--- |
| allow "curve gets steeper" allow idea of greater distance in a unit of time DOP |
| award 1 mark for idea that graph is a curve if no other marks awarded | \& 2

1
1
3

\hline
\end{tabular}

Question number	Answer	Notes	Marks
11 (a)	```substitution into \(p_{1} \times V_{1}=p_{2} \times V_{2} O R\) rearrangement; evaluation of volume; correctly expressed in standard form; e.g. \(100 \times 0.0043=270 \times V_{2}\) OR \(V_{2}=p_{1} \times V_{1} / p_{2}\) \(\left(\mathrm{V}_{2}=\right) 0.0016\left(\mathrm{~m}^{3}\right)\) \(\left(\mathrm{V}_{2}=\right) 1.6 \times 10^{-3}\left(\mathrm{~m}^{3}\right)\)```	allow 0.00159... (m^{3}) allow 1.59... $\times 10^{-3}\left(\mathrm{~m}^{3}\right)$	3
(b) (i) (ii)	idea that particles move more slowly at lower temp; particles collide with walls less often; particles collide with walls less force; dimensionally correct substitution into $\mathrm{p}_{1} / \mathrm{T}_{1}=\mathrm{p}_{2} / \mathrm{T}_{2}$; conversion of either temperature into kelvin; rearrangement; correct subsequent evaluation of p_{2} with consistent conclusion; e.g. $270 / 293=p_{2} / 275$ 293 or 275 used anywhere in calculation $\mathrm{p}_{2}=270 \times 275 / 293$ ($\mathrm{p}_{2}=$) $253(\mathrm{kPa})$ so light will not show	allow RA if clear allow lower kinetic energy (KE) reject no KE allow particles colliding less hard note: with walls/eq must be mentioned once ignore units can be implied 27 (kPa) so light will show scores 3 marks 243 (kPa) so light will show scores 2 marks	3 4

Question number	Answer	Notes	Marks
12 (a)	idea that the temperature outside the box is greater than the temperature inside the box;	however described e.g. "it is hotter outside the box than inside the box"	1
(b)	any two from: MP1. air / cardboard is a poor conductor / (good) insulator; MP2. air is a gas (which are poor conductors); MP3. particles in air are far apart / collide with each other rarely; MP4. idea that thicker objects (of the same material) conduct slower;	ignore idea of trapped air condone idea of 'nonconductor'	2
(c)	idea that air (particles) cannot move around; lid stops or reduces convection currents forming;	e.g. air cannot flow or air trapped accept idea that box is a solid and convection is impossible in solids for 1 mark	2
(d)	white / silver ; (because) these are poor emitters of infrared / radiation;	accept 'radiators' for emitters ignore references to absorption or reflection	2

Total for Question $12=7$ marks

