Centre							Dan	D . £				Surname		Initia	ıl(s)
No.							Рар	er Refei	ence						
Candidate No.					4	4	3	7	/	5	$ \mathbf{H} $	Signature			
			Reference	(s) /5H		•	•	•	•	•	•	_	Exan	niner's us	e only
						D		. •	_ 4	•					
		L	on	ao	n 1	ŁX	an	lln	at	lor	15	IGCSE	Team I	Leader's ı	use onl
		So	ciei	nce	(D	oul	ble	Av	var	d)					
		\mathbf{C}	hei	mis	try									Question Number	
		Pa	ipei	f 5H										1	
		F	Ti	gh	e 1	r	Гi	er	•					2	
			-								fta	rnoon		3	
				•						— F	Ane	rnoon		4	
		I 11	me:	1 ho	our	<i>3</i> 0 1	nın	utes							
														5	
		Mat Nil	terials	require	ed for	exami	nation	$\frac{1}{N}$		clude	d with	question papers		6	
									-					7	
														8	
Instructions	to Ca	ndida	ates											9	
In the boxes a signature.	bove, w	rite y	our ce	entre nu	ımber,	, cand	idate 1	numbe	r, you	r surn	ame a	nd initial(s) and you	ar		
The paper refe												rect question paper	:		
Answer ALL Show all stage															
Information	for C	andia	Jatas												
	k for thi	is pap	er is 9		e mark	s for	indivi	dual q	uestio	ns and	l the p	arts of questions ar	-		
shown in rour There are 9 qu					aper.										
There are 28 p A Periodic Tal	pages in	this o	questi	on pap		ıy blaı	nk pag	ges are	indic	ated.					
Advice to C			10												

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. $\verb§C2010$ Edexcel Limited.

Write your answers neatly and in good English.

Total

	0	Helium 2	Neon 10 Argon	Krypton 36 36 X & X & X & X & X & X & X & X & X & X	Hadon Badon 86	
	7		Fluorine 9 35.5 Chlorine	80 Bromine 35 35 127 127	Asiatine 85	
	9		16 Oxygen 8 32 Sulphur	Selenium 34 Tellurium Figure 128	Polonium 84	
	22		Nitrogen 7 31 Phosphorus	Arsenic 33 122 Sb Antimony 5 15	I I	
	4		Carbon 6 6 8 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	F	1 1	
	က			Gallium Gallium Gallium Gallium Gallium	204 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			₹	Znc Znc 30 Cd Cadmium		
\BLE				63.5 Copper 29 Ag Siliver		
THE PERIODIC TABLE						
ERIO				Nickel Nickel 28 28 106 Pd		
H H				Cobail Cobail 27 103 Hhodium		
-				56 Fe Iron 101 101 Ruthenium	OS Osmium 76	<u>Ş</u>
	Group	Hydrogen		Mn anganese 25 99 T C	Te Herium 75	Key Relative atomic mass Symbol Name Atomic number
				Cr Cr Cr Cr Se 96 Molybdenum Te	184 184 W Tungsten 74	
				S1 Vanadium 23 93 Niobium N	181 Ta Tantalum 73	
				48 Tianium 22 91 Srconium	179 Hathium 72	
				Scandium 21 Y X X X X X X X X X X X X X X X X X X		
	α		9 Beryllium 4 24 Magnesium	Calcium S S S S S S S S S S S S S S S S S S S	Barlum Li 226 226 Radium Radium 888	
			7 Li Lithium 8 23 Na Sodium Mi			·
		Period	ν ₈	4 rv	0 V	
		u.				

A	Leave blank
£	

1. The flow diagram represents the manufacture of ammonia by the Haber process.

SECTION

nitrogen >				
hydrogen	Reactor	\rightarrow	Cooler	> ammonia
		ļ '		•

1	(a)	State	three	conditions	nsed	in	the	reacto	۱r
I	a	State	uree	Conditions	usea	Ш	une	reacu	Ν.

1	
2	
3	
	(3)

(b)	What change	of state	does the	e ammonia	undergo	in th	e cooler?
-----	-------------	----------	----------	-----------	---------	-------	-----------

(1)

(c) Some of the ammonia formed in the Haber process is reacted with nitric acid to form ammonium nitrate.

(i) Write a chemical equation for this r	reaction

(2)

(ii) Give one major use of ammonium nitrate.

(1)	

(Total 7 marks)

Q1

2. Copper, iron and zinc can be reactants or products in displacement reactions. These metals have different reactivities.

The table shows the observations made when a student added a small amount of each metal to a solution of the sulphate of one of the other metals.

Experiment	Reagents	Observations
1	copper + iron(II) sulphate	no change
2	copper + zinc sulphate	no change
3	iron + copper(II) sulphate	solution turns from blue to pale green solid turns from dark grey to pink-brown
4	iron + zinc sulphate	no change
5	zinc + copper(II) sulphate	solution turns from blue to colourless solid turns from light grey to pink-brown
6	zinc + iron(II) sulphate	solution turns from pale green to colourless solid turns from light grey to dark grey

In Experiment 1, why was there no reaction?	
	(1)
In Experiment 3, which ion is responsible for the blue colour?	
	(1)
In Experiment 5, what is the pink-brown solid?	
	(1)
In Experiment 6, why does the solid turn from light grey to dark grey?	
	(1)
	In Experiment 3, which ion is responsible for the blue colour? In Experiment 5, what is the pink-brown solid? In Experiment 6, why does the solid turn from light grey to dark grey?

(e)	Which of the three metals is the most reactive?	Lea blai
	(1)	
(f)	When preparing for these experiments, the student found a bottle labelled "iron sulphate solution". To find out whether the solution contained iron(II) sulphate or iron(III) sulphate he tested it by adding sodium hydroxide solution.	
	State the observation made, and identify the substance responsible for the observation, if the bottle contained iron(II) sulphate solution.	
	Observation	
	Substance responsible	
	(2)	Q2
	(Total 7 marks)	

Leave	1
blank	

3	TEL C 1 C II	1 (7)]	
4	The formulae C. H.	. and C.H. renrecent	two organic compounds
J.	The formulae Carr	6 and Cara represent	t two organic compounds.

(a) The compounds C_2H_6 and C_3H_8 are members of the same homologous series								
(a) The compounds (b) Hz and (b) He are members of the same homologous series	/ \	7D1 1	O TT 1 /	~ TT	1 0	41	1 1	•
	101	I ha compounds	I'H and I	· H ara	mamhare at	tha coma	hamalagang	CATIAC
	ta.	THE CONTIDUUMUS	COLIG AUGU V		HIGHIDGIS OF	THE SAIDE	- 1101111011020115	SULLOS

(i)	What is the name of this homologous series?

(1)

(ii) What is the general formula of this homologous series?

(1)

(iii) Other than having the same general formula, state **two** other characteristics of members of the same homologous series.

1	
2	

(2)

(b) The displayed formula of C₂H₆ is

Draw the displayed formula of C₃H₈.

(1)

6

(c)	Compounds with the molecular formula C_4H_{10} are also members of this hor series.	mologous	Lea bla	
	There are two isomers with this molecular formula.			
	(i) What is meant by the term isomers ?			
		(2)		
		(2)		
	(ii) Name one of these isomers and draw its displayed formula.			
	Name			
	Displayed formula			
		(2)		
(d)	Methane is another member of this homologous series.			
	Write a word equation for the complete combustion of methane.			
		(2)	Q	3
	(Total 1	1 marks)		_
	(Total I	i marks)		

4		Lea bla
4.	Magnesium and fluorine react to form the ionic compound magnesium fluoride.	
	(a) The diagrams show the electron arrangement in an atom of magnesium and in an atom of fluorine.	
	Mg F X	
	Describe what happens, in terms of electrons, when magnesium reacts with fluorine.	
	(3)	
	(b) Give the formula of each of the ions in magnesium fluoride.	
	(2)	Q4
	(Total 5 marks) TOTAL FOR SECTION A: 30 MARKS	

SECTION B

5. Copper(I) sulphide reacts with oxygen when heated in air.

$$Cu_2S + O_2 \rightarrow 2Cu + SO_2$$

Γhe	e copper produced by this reaction is impure.	
(a)	State two problems caused by releasing sulphur dioxide into the atmosphere.	
	(2	· 2)
(b)	Copper can be purified by electrolysis. The impure copper is used as the positive electrode (anode).	
	(i) What is used as the negative electrode (cathode)?	
	(1	[)
	(ii) Identify the solution used as the electrolyte.	
	(1	[]
(c)	Give one use of copper and state the property of copper on which that use depends.	
	Use	. •
	Property	
	(2	4)

 	 	 	_	 	 	
		1				

(d) Iron is obtained by reducing iron(III) oxide contained in haematite using a blast furnace.

(i) Why is hot air blown into the bottom of the blast furnace?

		(2)
(ii)	The haematite contains silicon dioxide as an impurity. The limestone is added to remove the silicon dioxide.	
	Explain how the limestone does this. You may use equations in your answer.	
		••••
		(4)

2Fe ₂ O ₃ + 3C → 4Fe + 3CO ₂ Using the equation, explain why this is called a redox reaction. (2) (Total 14 marks)		he blast furnace is represented by the	(iii) One of the r equation:	
(2)		$3CO_2$		
(2)		ed a redox reaction.	Using the eq	
(2)				
(2)				
(2)				
(Total 14 marks)				
	_	(Total 14 marks)		

Leave
blank

6.	A teacher adds a small piece of sodium to a large volume of water.
	He makes the following observations:

- the sodium melts
- the sodium slowly moves across the surface of the water
- there is fizzing.

(a)	Rubidium	is	in	the	same	group	of	the	Per	riodic	Table	as	sodium
u	ituoiaiaiii	10	111	uic	Summe	SIUUP	O.I	uic	1 01	louic	Iuoic	$a_{\mathcal{O}}$	boaran

(i)	Why do elements in the same group have similar chemical properties?						
		(1)					
(ii)	Write a chemical equation for the reaction of rubidium with water.						

•••••	• • • • • • • • • • • • • • • • • • • •	 	 	• • • • • • • • • • • • • • • • • • • •	
		 	 •	• • • • • • • • • • • • • • • • • • • •	

(iii) Compared to sodium, suggest **one** different observation that could be made when rubidium reacts with water.

(1)

(b) Complete the table about the atomic structures of sodium and rubidium.

Element	Atomic number	Mass number	Number of neutrons	Number of protons	Number of electrons
sodium	11		12	11	
rubidium	37	85		37	37

(3)

(ii) 72.2% of rubidium atoms in this sample have a mass number of 85. All other rubidium atoms in this sample have a mass number of 87. Calculate the relative atomic mass of rubidium. Give your answer to one decimal place.	
(ii) 72.2% of rubidium atoms in this sample have a mass number of 85.All other rubidium atoms in this sample have a mass number of 87.Calculate the relative atomic mass of rubidium.	
(ii) 72.2% of rubidium atoms in this sample have a mass number of 85.All other rubidium atoms in this sample have a mass number of 87.Calculate the relative atomic mass of rubidium.	
(ii) 72.2% of rubidium atoms in this sample have a mass number of 85.All other rubidium atoms in this sample have a mass number of 87.Calculate the relative atomic mass of rubidium.	
All other rubidium atoms in this sample have a mass number of 87. Calculate the relative atomic mass of rubidium.	(2
	(3

(i)	Describe the structure of rubidium chloride in terms of the arrangement and types
(1)	of particle.
	(2)
(ii)	Why does rubidium chloride conduct electricity when it is molten?
	(1)
	(Total 15 marks)
	(Total 13 marks)
	(10tai 13 marks)
	(Total 13 marks)

7.	(a)	Carbon dioxide can be prepared in the laboratory by reacting dilute hydrochl with calcium carbonate.	oric acid
		(i) Write a chemical equation for this reaction.	
			(2)
		(ii) Carbon dioxide reacts with water to form a weakly acidic solution.	
		$CO_2(g) + H_2O(1) \rightleftharpoons H_2CO_3(aq)$	
		What is the name of the acid formed?	
			(1)
	(b)	Magnesium oxide forms when magnesium burns in air.	
		$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$	
		Describe what is observed when magnesium burns in air.	
			(2)

(c) The following apparatus can be used to determine the percentage by volume of oxygen in the air.

The approximate percentage by volume of oxygen in air is 20%.

(i) The volume of air in the bell jar at the start of the experiment is 5.0 dm³.

Calculate the amount, in moles, of oxygen molecules in the bell jar. (The molar volume of a gas is 24 dm³.)

(2)

(ii) Calculate the amount, in moles, of magnesium needed to react with this amount of oxygen.

(1)

(iii) Calculate the minimum mass, in grams, of magnesium needed to react with all the oxygen in the bell jar.	Leave blank
(2)	Q7
(Total 10 marks)	

8. Crude oil is a complex mixture of hydrocarbons. It is separated into fractions by fractional distillation. The diagram shows a fractionating tower.

Leave blank

(a) Describe how crude oil is separated into fractions.

 	 	•••••
 •••••	 •••••	•••••

(3)

Leave	
blank	

(b)	Son	ne fractions containing long-chain hydrocarbons are cracked.
	(i)	During cracking, a hydrocarbon with the formula $C_{20}H_{42}$ produces only two products. One of the products is an alkene.
		Complete the following equation:
		$C_{20}H_{42} \rightarrow \dots$
	(ii)	Give two reasons why it is economically important to crack long-chain hydrocarbons.
		(2)
c)	Alk	enes can form addition polymers.
	(i)	B d : 1, 0d 1411 1 0 11 2 == -: -:
	(1)	Draw the repeat unit of the addition polymer formed by propene, CH ₃ CH=CH ₂ .
	(1)	Draw the repeat unit of the addition polymer formed by propene, CH ₃ CH=CH ₂ .
	(1)	
	(1)	
	(1)	
	(1)	
	(1)	
	(1)	

(a)	Explain why ammonia has a low boiling point.
	(3
(b)	Ammonia reacts with iodine.
	$NH_3 + 3I_2 \rightarrow NI_3 + 3HI$
	Hydrogen iodide, HI, is given off as a gas; it is very similar to hydrogen chloride.
	Suggest what is seen when hydrogen iodide reacts with sodium carbonate solution.

		Leav
(c)	Nitrogen triiodide, NI ₃ , readily decomposes.	
	$2NI_3 \rightarrow N_2 + 3I_2$	
	(i) Draw a dot and cross diagram to show the bonding in a nitrogen molecule.	
	(2)	
	(ii) Name the type of bonding in nitrogen.	
	(c) This is the second of the	
	(1)	
(d)	Ammonia reacts with phosphoric acid to form a compound that contains 28.2% nitrogen, 8.1% hydrogen, 20.8% phosphorus and 42.9% oxygen by mass.	
	Calculate the empirical formula of this compound.	
	(3)	
	(Total 10 marks)	
	TOTAL FOR SECTION B: 60 MARKS TOTAL FOR PAPER: 90 MARKS	
	END	

