Centre							D	D . C.				Surname	Initia	al(s)
No.							Pape	er Refe	ence					
Candidate No.					4	4	3	7	/	5	H	Signature		
		•	r Reference								•	Eve	min ar'a 11a	o omly
		44	+3 //	/5H								Exa	miner's us	e only
		L	on	do	n]	Ex	an	nin	ati	ior	is]	$IGCSE^{ogtymes_{Team}}$	Leader's ı	use only
		S	ciei	nce	(D	ou	ble	Av	var	d)				
					`					,				
		C	nei	mis	try								Question Number	Leave Blank
		Pa	apei	r 5 H									1	
		F	Tie	gh	e 1	r	Гi	er	•				2	
			•							ftor	·n 0 0	10	3	
				esda						nei	поо	11		
		Ti	me:	1 h	our	30 1	min	utes					4	
													5	
		Ma Nil		require	ed for	exami	nation	$-\frac{\mathbf{It}}{\mathbf{N}}$		cludeo	d with	question papers	6	
		INII						IN.	11				7	
													8	
Instructions	to Ca	andid	ates										9	
				entre nu	ımber,	cand	idate r	numbe	r, you	r surn	ame a	nd initial(s) and your	10	
The paper refe												rect question paper.		
Answer ALL to Show all stage												estion paper.		
Some question answer, put a l												mind about an ross (⊠).		
-				\ <u></u> ,			-					<u>(</u>		
Information The total mark				90. The	e mark	s for	indivi	dual a	uestio	ns and	the n	arts of questions are		
shown in roun	d brac	kets:	e.g. (2)) .				1	9	.,•	· r	T		
There are 10 q There are 20 p							nk pag	es are	indic	ated.				
A Periodic Tab						,	1	,						
Advice to Ca	ndid	ates												
Write your ans			and ir	n good	Englis	sh.								

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. $\hbox{$\bigcirc$}2010$ Edexcel Limited.

Printer's Log. No. N36852A W850/U4437/57570 6/7/6/2/

Turn over

Total

	0	Helium 2	Neon 10 10 Argon	Krypton 36 38 Xenon Xenon 54	Radon 886	
	7		Fluorine 9 35.5 Chlorine	Bromine 35 35 127 127 127 53	Astatine 85	
	9		Oxygen 8 8 Sulphur	Selenium 34 128 Tellurium 52	Polonium 84	
	Ŋ		Nitrogen 7 31 31 Phosphorus	Arsenic 33 122 Sb Antimony 51	I I	
	4		Carbon Carbon 6 6 Silicon Silicon 7	F	1	
	က		B Boron 5 27 Al Muminium	Gallium C 31 115 115 119 149	204 TT Thailium 81	
				65 Zn Zinc 30 30 L112 Cd Cadmium 48		
THE PERIODIC TABLE				63.5 Cu Copper 29 108 Ag Ag	1	
ODIC .					Patinum 78	
PERI				59 Cobalt 27 103 Rhodium P	1	
Ϊ				Fe F		
	Group	Hydrogen		Manganese 25 99 Technetium Rut 43	186 Renium 03	Key Relative atomic mass Symbol Name Atomic number
	Ö	H		Cr Chromium Man 24 96 Molybdenum Tech	194 V V Tungsten Rh	Atc
				Chromina Molytic	alaum Tun	
				V Vanadium Vanadium S3 83 ND		
				48 Ti Ti Tianium 22 2 91 Zr Zr Zr Zr 40 40	Hathrium Hathrium 72	
			_ F	Scandium 21 X X X X X X X X X X X X X X X X X X		
	α		9 Beryllium 4 A Mggmesium	Calcium Calcium 20 20 Strontium 38 Strontium 38	Barlum Barlum S6 226 Ra Radium 88	
	-		Lithium 3 23 23 Sodium	Potassium 19 86 Rubidium 37	133 Caesium 55 223 Fr Francium 87	•
		Period 1	ი ი	4 r	9 /	

SECTION A

1. Lithium and potassium are both reactive metals.

A small piece of each metal is added to separate troughs of water.

The metals react with water as shown in these equations:

lithium + water \rightarrow compound A + gas X

potassium + water \rightarrow compound **B** + gas **X**

(a) (i)	State one observation that would be the same during both reactions.
	(1)

(ii) State one observation that could be made during the reaction between potassium and water, but not during the reaction between lithium and water.

(1)

.....

(b) (i) What is the **name** of compound **A**?

(ii) What is the **formula** of compound **B**?

(1)

.....

(c) Identify gas X and describe a test, and the result, for this gas.

Identity of X

Test

(2)

(d) (i)	State the colour of universal indicator in a solution of compound B . Which ion causes universal indicator to turn this colour?	Leave blank
	Colour of universal indicator	
	Ion(2)	
(ii)	What colour does compound B give in a flame test?	
	(1)	Q1
	(Total 9 marks)	

(a) Du	ring industrial refining, crude oil is first separated into fractions.	
(i)	What is the name of the process used to obtain fractions from crude oil?	
(1)	what is the name of the process used to obtain fractions from crude off:	
		······ (1)
(ii)	Describe how the fractions are obtained.	
		•••••
		•••••
		•••••
		(4)
(b) Fo	ur of the fractions obtained from crude oil are:	()
(0) 10	bitumen	
	diesel	
	gasoline kerosene	
(i)	Which of these four fractions is used in making roads?	
(-)		
		(1)
(ii)	Name one other fraction obtained from crude oil.	
		(1)

(c) Octane is a hydrocarbon in the gasoline fraction.	Leave blank
Write the names of the substances in the word equation for the complete combustion	
of octane.	
octane + +	
(d) Octane belongs to a homologous series called the alkanes. What is the general formula of the alkanes?	
(1)	Q2
(Total 11 marks)	

	e reaction between magnesium and chlorine forms the ionic compound magnesium oride, MgCl ₂ .
(a)	State the electronic configurations of magnesium and chlorine atoms.
	Magnesium
	Chlorine(2)
(b)	By reference to electrons, describe how magnesium and chlorine atoms form magnesium chloride.
	(3)
(c)	Oxidation occurs in this reaction.
	Identify the substance that is oxidised in the reaction, giving a reason for your choice.
	Substance oxidised
	Reason

(d) Explain why magnesium chloride has a high melting point.	
	(3)
(Total 10 mark	ks)
TOTAL FOR SECTION A: 30 MARI	KS

4.	(a)	Wh	nat is meant by the term atomic number ?
		••••	
			(1)
	(b)	(i)	What name is given to two atoms of the same element that contain different numbers of neutrons?
			(1)

(ii) Complete the table about two atoms of argon.

Number of protons in an atom	Number of electrons in an atom	Number of neutrons in an atom	Mass number	
18	18	20		
			40	

(4)

(iii) Explain why argon is chemically unreactive.
(1)

	Leave blank
(c) In a sample of copper, 69.1% of the atoms have a mass number of 63 and the	June
remainder have a mass number of 65. Use this information to calculate the relative atomic mass of copper. Give your	
answer to 3 significant figures.	
(3)	Q4
(Total 10 marks)	

5. Magnesium carbonate undergoes thermal decomposition in a similar way to calcium carbonate.

magnesium carbonate

HEAT

(a) Write a chemical equation for the thermal decomposition of magnesium carbonate.

(2)

(b) Magnesium carbonate can be made as a precipitate by reacting together solutions of two soluble salts.

(i) Name two suitable soluble salts.

(2)

(ii) Describe how you would obtain a pure, dry, sample of the magnesium carbonate formed in this reaction.

(3)

(Total 7 marks)

Q5

6. A and **B** are two hydrocarbons with the molecular formula C_4H_8 . Their structures are:

B

 \mathbf{A}

(a) Describe a chemical test to distinguish between hydrocarbons **A** and **B**. Give the result you would expect for each hydrocarbon.

Test

Result with A

Result with **B**(3)

(b) Hydrocarbon C belongs to the same homologous series as **B**. It has the structure:

 \mathbf{C}

C forms an addition polymer. Draw the repeat unit of this polymer.

(2)

(1)

(c) Give the name of the addition polymer formed by C.

.....

Q6

(Total 6 marks)

(2)

7. The table gives some information about two metals and their compounds.

Substance	Colour of solid	Solubility in water	Colour of solution
copper	brown	insoluble	not applicable
copper(II) sulphate	blue	soluble	blue
zinc	grey	insoluble	not applicable
zinc sulphate	white	soluble	colourless

(a)	Wh plac	en zinc is added to copper(II) sulphate solution a displacement reaction takes ee.
	(i)	Write a chemical equation for the displacement reaction.
		(2)
	(ii)	What does this reaction suggest about the reactivity of copper compared to zinc?
		(1)
	(iii)	Use the information in the table to describe what you would expect to see during the reaction.

	rusts when exposed to air and water. os are often prevented from rusting by attaching zinc blocks to their hulls.	
	Give the name of this method of preventing rusting.	
()	r to the contract of the contr	
	(1)	
(ii)	Explain how the zinc blocks prevent rusting.	
	(2)	
(iii)	Suggest why attaching copper blocks to the hulls of ships would not prevent them	
	from rusting.	
	(1)	
	(Total 9 marks)	

<i>(</i>)	
(a)	Write the chemical equation for this reaction.
	(2)
(b)	State and explain the colour change seen when hydrogen chloride gas is bubbled into water containing universal indicator.
	(3)
(c)	A hydrogen chloride molecule contains a covalent bond.
	Draw a dot and cross diagram to show the electrons in this molecule. Show only the outer electrons of each atom.
	(2)
(d)	Hydrogen chloride is a gas at room temperature.
	Explain why hydrogen chloride has a low boiling point.
	(2)

(4)

9. Magnesium is reacted with excess dilute hydrochloric acid using the apparatus shown.

(a)	Write a chemical equation for the reaction between magnesium and dilute hydrochloric acid.
	(2)
(b)	During the reaction the temperature of the dilute hydrochloric acid increases. State and explain how this would change the rate of the reaction.

(c)	The experiment was repeated using a water bath to keep the temperature of the acid constant. The graph shows the volume of gas collected at different times during the experiment.	Leave blank
	volume of gas collected in cm ³	
	0 time in seconds 100	
	(i) What happens to the rate of reaction between 10 and 30 seconds?	
	(1)	
	(ii) Explain why the rate of reaction changes in this way.	
	(2)	
	(iii) The experiment was repeated using excess hydrochloric acid of double the original concentration. All other variables were kept constant. Sketch on the axes above the results you would expect to obtain.	
	(2) (Total 11 marks)	Q9

(a) Copper(II) carbonate reacts with dilute hydrochloric acid.
The equation for the reaction is
$CuCO_3(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(l) + CO_2(g)$
An excess of copper(II) carbonate was added to a solution containing 0.200 mol of hydrochloric acid.
(i) Calculate the amount, in moles, of copper(II) carbonate that will react with 0.200 mol of hydrochloric acid.
(1)
(ii) Calculate the mass, in grams, of this amount of copper(II) carbonate.
(2)
 (iii) Calculate the volume of carbon dioxide gas at room temperature and atmospheric pressure that will be formed in this reaction. (The volume of 1 mol of any gas at room temperature and atmospheric pressure is 24 dm³).
(2)
(b) Describe what is seen when excess ammonia solution is added gradually to copper(II) chloride solution. Give the formula of the complex ion formed.

END

TOTAL FOR SECTION B: 60 MARKS

TOTAL FOR PAPER: 90 MARKS