Candidate No. Signature	Cei No	ntre				Surname	Initial(s)
	Caı	ndidat	e No.			Signature	

Paper Reference(s)

4437/2F

London Examinations IGCSE Science (Double Award) Chemistry

Paper 2F

Foundation Tier

Tuesday 7 November 2006 - Morning

Time: 1 hour 15 minutes

Materials required for examination	Items included with question papers
Nil	Nil

Instructions to Candidates

In the boxes above, write your centre number and candidate number, your surname, initial(s) and signature.

The paper reference is shown at the top of this page. Check that you have the correct question paper. Answer **ALL** the questions in the spaces provided in this question paper.

Show all the steps in any calculations and state the units.

Calculators may be used.

Information for Candidates

The total mark for this paper is 75. The marks for parts of questions are shown in round brackets: e.g. (2).

A Periodic Table is given on page 2.

This paper has 10 questions. All blank pages are indicated.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2006 Edexcel Limited

N23691A

Examiner's use only

Turn over

Total

W850/U4437/57570 3/3/3/4/4/400

Helium Felium 20 20 20 131 131 131 222 222 222 222 222 222 224 56 66 66 66 66 66 66 66 66 66 66 66 66	
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
7 Fluorine 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
6 O O O O O O O O O O O O O O O O O O O	
Titogen 15	
Carbon N Silicon N S S S S S S S S S S S S S S S S S S	
38 BBron BBron 13 1 15 115 115 115 115 115 115 115 115	
S S S S S S S S S S S S S S S S S S S	
THE PERIODIC TABLE CO Ni Cu Cubalt Copper 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	
Se Se Nickel 28 196 Pd	
Cobatt 277 192 192 192 177 177	
Se S	
	Symbol Name Atomic number
52 Cr Chromium 24 24 86 MO 422 184 W W Tungsten 74	-
S1	
48 Titanium 22 Zirconium 40 179 THafnium 72	
Scandium 21 88 89 89 139 139 139 139 89 89 89 89	
Beryllium 28 Strontium 38 Barium 38	
Lithium 37 133 CS Caesium 37 7 133 CS CAesium 37 Francium 87 Fr	
Period 7 8 9 7	

Iro	n is a metal which can rust.		
(a)	Name the two substances that must be pr	resent for iron to rust.	
	1		
	2		
			(2)
(b)	The table gives three methods of prevent complete the table. Each word may be u		
	bicycle chain	bridge	
	bucket	car body	
	food can		
	Method of preventing rusting	Example of wh	nere used
	galvanising		
	oiling		
	painting		
		-	(3)
			,

Leave	
blank	

2.	(a)	The table shows different methods of separating mixtures.	Tick (\checkmark) one box in each
		row to show the best method for each mixture.	

Method Mixture	Filtration	Distillation	Chromatography	Fractional distillation
different coloured inks				
sand and water				
copper(II) sulphate and water				

(3)

(2)

(b)	State a simple physical test to show that a sample of water is pure.	Give the result of
	the test.	

Test

Result

Q2

(Total 5 marks)

(a) Aluminium is extracted from aluminium oxide by electrolysis. The diagram shows a cross-section through an electrolysis cell.
positive electrode made of carbon aluminium oxide dissolved in a solvent negative electrode made of carbon (i) Name the solvent used.
(1)
(ii) The positive and negative electrodes are made of carbon. What property of carbon makes it suitable for this purpose?
carbon makes it suitable for this purpose? (1) (iii) The positive electrodes need to be replaced regularly. This is because they react with one of the products of the electrolysis.
carbon makes it suitable for this purpose? (1) (iii) The positive electrodes need to be replaced regularly. This is because they react with one of the products of the electrolysis. Which product reacts with the positive electrodes?

(Total 5 marks)

						(1)			
b) Whi	ch particle in	n an atom has	a negative ch	arge?					
						(1)			
c) Whi	ch particle in	n an atom has	the lowest ma	ass?					
						(1)			
d) (i)	The table given	ves some info	rmation abou	t different ator	ms. Complete	e the table.			
	Atom	Mass number	Atomic number	Number of protons	Number of neutrons	Number of electrons			
	W	35	17	17		17			
	X		11	11	12	11			
	Y	39		19	20	19			
	Z	37	17	17	20				
						(4)			
(ii)	From the tab	ole select							
	• two atoms	which are iso	otopes of the	same element					

(e)	Bromine is in Group 7 of the Periodic Table. Each bromine atom has 7 electrons in its outer shell.
	Iodine is directly below bromine in the Periodic Table. How many electrons does an atom of iodine have in its outer shell?
	(1)
	(Total 11 marks)

5.	(a)	Cru	de oil is a mixture of many different compounds.	
		(i)	Place ticks (\checkmark) in the boxes next to the names of three substances that can be obtained directly from crude oil.	
			bitumen	
			ethanoic acid	
			ethanol	
			gasoline	
			graphite	
			kerosene	
			(3)	
		(ii)	What process is used to separate the compounds in crude oil?	
			(2)	
		_	(2)	
	(b)	Dra	w the displayed formula of ethene.	
			(1)	
	(c)		en bromine water is added to ethene a reaction occurs. What colour change is	
		seei	n?	
			(2)	
	<i>(</i> 1)	<i>.</i> •.	(2)	
	(d)	(1)	Give the name of the polymer formed from ethene.	
			(1)	
		(ii)		
		(11)	Give one use of this polymer.	
			(1)	Q5
			(Total 10 marks)	
			(Total To marks)	

Thi	s question is about sulphuric acid and substances made using sulphuric acid.
(a)	Place ticks (\checkmark) in the boxes next to the two statements that are correct.
	sulphuric acid has a pH value of more than 7
	sulphuric acid has the formula H ₂ SO ₄
	sulphuric acid reacts with copper(II) carbonate to form hydrogen gas
	sulphuric acid turns red litmus blue
	sulphuric acid turns universal indicator red
	(2)
(b)	A teacher gives the following instructions for making hydrated copper(II) sulphate crystals.
	Place 50 cm³ of dilute sulphuric acid in a beaker. Add a spatula full of copper(II) carbonate to the acid and stir. Continue to add copper(II) carbonate until all the acid has reacted. Filter the mixture into an evaporating dish.
	Evaporate the filtrate until the crystallisation point. Leave the evaporating dish to cool. Dry the crystals using filter paper.
	Evaporate the filtrate until the crystallisation point. Leave the evaporating dish to cool.
	Evaporate the filtrate until the crystallisation point. Leave the evaporating dish to cool. Dry the crystals using filter paper.
	Evaporate the filtrate until the crystallisation point. Leave the evaporating dish to cool. Dry the crystals using filter paper. (i) How can you tell when all the acid has reacted?
	Evaporate the filtrate until the crystallisation point. Leave the evaporating dish to cool. Dry the crystals using filter paper. (i) How can you tell when all the acid has reacted? (1)
	Evaporate the filtrate until the crystallisation point. Leave the evaporating dish to cool. Dry the crystals using filter paper. (i) How can you tell when all the acid has reacted? (1) (ii) Why is the mixture filtered?
	Evaporate the filtrate until the crystallisation point. Leave the evaporating dish to cool. Dry the crystals using filter paper. (i) How can you tell when all the acid has reacted? (ii) Why is the mixture filtered? (1)
	Evaporate the filtrate until the crystallisation point. Leave the evaporating dish to cool. Dry the crystals using filter paper. (i) How can you tell when all the acid has reacted? (ii) Why is the mixture filtered? (1) (iii) Give the names of the two substances in the filtrate.

(i) What colour change does he see as he adds the water? (2) (ii) What is the name given to reactions which can go in either direction? (1) (Total 9 marks) TOTAL FOR SECTION A: 45 MARKS		student follows the instructions but heats the evaporating dish until all the water as gone. He has made anhydrous copper(II) sulphate. His teacher tells him to add ater to the anhydrous solid to make hydrated copper(II) sulphate.
(ii) What is the name given to reactions which can go in either direction? (1) (Total 9 marks)	(i)	What colour change does he see as he adds the water?
(ii) What is the name given to reactions which can go in either direction? (1) (Total 9 marks)		
(1) (Total 9 marks)		
(Total 9 marks)	(ii	i) What is the name given to reactions which can go in either direction?
		(1)
TOTAL FOR SECTION A: 45 MARKS		
		TOTAL FOR SECTION A. 43 MARKS

L	eave	
h	lank	

(a)	In ii	ndustry, chlorine and sodium hydroxide are manufactured from brine.	
	(i)	Name the compound in brine that is the source of chlorine.	
			(1)
	(ii)	What method is used to obtain chlorine and sodium hydroxide from brine?	
			(1)
	(iii)	State one large-scale use of sodium hydroxide.	
			(1)
(b)	Wha	at colour is chlorine gas?	(1)
			(1)
(c)		np red litmus paper changes colour when placed in separate samples of chlosodium hydroxide.	
(c)	and		
(c)	and	sodium hydroxide.	
(c)	and (i)	sodium hydroxide.	orine
(c)	and (i) (ii)	State the colour of red litmus paper in chlorine gas. What property of chlorine is shown by this colour change?	orine
(c)	and (i) (ii)	State the colour of red litmus paper in chlorine gas.	(1)
(c)	and (i) (ii)	State the colour of red litmus paper in chlorine gas. What property of chlorine is shown by this colour change? State the colour of red litmus paper in sodium hydroxide solution.	(1)
(c)	and (i) (ii)	State the colour of red litmus paper in chlorine gas. What property of chlorine is shown by this colour change?	(1)

(a)	Stat	e why these compounds are described as
	(i)	saturated
	<i></i>	(1)
	(11)	hydrocarbons
		(1)
		and C_4H_{10} are members of the same homologous series. All members of the e homologous series can be represented by a general formula.
	(i)	What is the general formula of this homologous series?
		(1)
	(ii)	To which homologous series do CH ₄ and C ₄ H ₁₀ belong?
		(1)
	(iii)	Give two other features of members of the same homologous series.
	` ′	1
		2
(c)	The	compound C_4H_{10} exists as isomers. What is meant by the term isomers ?
		(2)
		(Total 8 marks)

Al Cl ⁻ Mg Mg ²⁺ Na ⁺ O ²⁻ (a) Which one of these is formed by the loss of one electron from an atom? (1) (b) Which one of these is formed by the gain of two electrons by an atom? (1) (c) Which one of these has the same electronic configuration as an atom of argon? (1) (d) Which one of these has an electronic configuration of 2.8.2?
(b) Which one of these is formed by the gain of two electrons by an atom? (1) (c) Which one of these has the same electronic configuration as an atom of argon? (1) (d) Which one of these has an electronic configuration of 2.8.2?
(b) Which one of these is formed by the gain of two electrons by an atom? (1) (c) Which one of these has the same electronic configuration as an atom of argon? (1) (d) Which one of these has an electronic configuration of 2.8.2?
(1) (c) Which one of these has the same electronic configuration as an atom of argon? (1) (d) Which one of these has an electronic configuration of 2.8.2?
(c) Which one of these has the same electronic configuration as an atom of argon? (d) Which one of these has an electronic configuration of 2.8.2?
(d) Which one of these has an electronic configuration of 2.8.2?
(d) Which one of these has an electronic configuration of 2.8.2?
(1)
(e) Which three of these have the same electronic configuration?
(1)
(Total 5 marks)

		(1)
	(ii) ΔH is negative for this reaction. What does this indicate?	
(b)	Draw a dot and cross diagram to show the bonding in H_2 .	(1)
(c)	H ₂ molecules contain strong bonds. Explain why the boiling point of H ₂ is low.	(1)
		(2)
(d)	A student carries out a test to show that a solution of hydrogen chloride concelloride ions. First she adds dilute nitric acid.	tains
	(i) Name the other solution she adds.	
		(1)
	(ii) Describe what she observes.	
		(1)
	(iii) Complete the equation to show the reaction that occurs. + HCl →+	
		(2) Q

