

# Mark Scheme (Results)

# January 2020

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 02R

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020 Publications Code 4MB1\_02R\_2001\_MS All the material in this publication is copyright © Pearson Education Ltd 2020

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# • Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

# • Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent

- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

# • No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

## • With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. E.g. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

## • Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

## • Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

| Que | stion | Working                                  | Answer    | Mark | Notes                                                   |
|-----|-------|------------------------------------------|-----------|------|---------------------------------------------------------|
| 1   | (a)   | $0.8 \times 0.9$ (= 0.72)                |           |      | M1 or for $\frac{20340}{0.9}$ (= 22600 - value in 2017) |
|     |       | $\frac{20340}{0.8 \times 0.9}$           |           |      | M1 (DEP) or for $\frac{'22600'}{0.8}$                   |
|     |       |                                          | (£)28 250 | 3    | A1                                                      |
|     | (b)   | $\frac{20340 - 19323}{20340} \times 100$ |           |      | M1 or for $\frac{19323 - 20340}{20340} \times 100$      |
|     |       |                                          | 5(%)      | 2    | A1 allow -5                                             |
|     |       |                                          |           |      | Total 5 marks                                           |
|     |       |                                          |           |      |                                                         |

| 2  | (a) |                                                                                                                                                                                      | Two of<br>2x + y = 2.4 (oe)<br>x + 2y = 2.6 (oe)<br>3x + 3y = 5 (oe) | 2 | B1 (one mark for each)<br>B1 (oe)<br>$\frac{2x+y}{1+(2x+y)+(x+2y)} = \frac{2}{5},$<br>eg $\frac{x+2y}{1+(2x+y)+(x+2y)} = \frac{13}{30}$ $\frac{1}{1+(2x+y)+(x+2y)} = \frac{1}{6}$ |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) | Isolating <i>x</i> or <i>y</i> <b>or</b> rearranging such that coefficients of <i>x</i> or <i>y</i> are the same in both equations                                                   |                                                                      |   | M1 – follow through on their linear<br>simultaneous equations<br><b>NB:</b> Condone one arithmetic error                                                                          |
|    |     | Correctly substituting their expression for <i>x</i> or <i>y</i> to obtain <i>y</i> or <i>x</i> or correct operation to eliminate selected variable and solve for remaining variable |                                                                      |   | M1 (DEP) – e.g. obtaining an equation in x e.g.<br>15x = 11 followed by $x =$ (but condone<br>incorrect x value from their linear equation)                                       |
|    |     |                                                                                                                                                                                      | $x = \frac{11}{15}$ $y = \frac{14}{15}$                              | 3 | A1                                                                                                                                                                                |
|    |     |                                                                                                                                                                                      |                                                                      |   | Total 5 marks                                                                                                                                                                     |
| OR | (a) |                                                                                                                                                                                      | 2X + Y = 252 $X + 2Y = 273$                                          |   | SC: B1 for both equations                                                                                                                                                         |
|    | (b) | Isolating <i>x</i> or <i>y</i> <b>or</b> rearranging such that coefficients of <i>x</i> or <i>y</i> are the same in both equations                                                   |                                                                      |   | M1 – follow through on their linear<br>simultaneous equations<br><b>NB:</b> condone one arithmetic error                                                                          |
|    |     | Correctly substituting their expression for $x$ or $y$ to obtain $y$ or $x$ or correct operation to eliminate selected variable and solve                                            |                                                                      |   | M1 (DEP) as above                                                                                                                                                                 |
|    |     | <b>NB:</b> 2(a) equations give $X = 77$ and $Y = 98$ which need to be divided by 105                                                                                                 | $x = \frac{11}{15}$ $y = \frac{14}{15}$                              |   | A1                                                                                                                                                                                |

| 3  | (a) | -2 (value of the determinant)                                                                            |              |   | B1                                                                                                                                       |
|----|-----|----------------------------------------------------------------------------------------------------------|--------------|---|------------------------------------------------------------------------------------------------------------------------------------------|
|    |     |                                                                                                          | 1(4 - 2)     | 2 | B1 (oe)                                                                                                                                  |
|    |     |                                                                                                          | -2(-5 2)     |   |                                                                                                                                          |
|    | (b) | $1 (4 -5) (2 -2) (y^2 - 9x)$                                                                             |              |   | M1                                                                                                                                       |
|    |     | -2(-2  2)(5  4)(x)                                                                                       |              |   | $Or\left(\frac{y^2-9x}{y^2-9x}\right) = \left(\begin{array}{cc}2&2\\\end{array}\right)^{-1}\left(\begin{array}{cc}0\\\end{array}\right)$ |
|    |     | $= "\frac{1}{-2} \begin{pmatrix} 4 & -5 \\ -2 & 2 \end{pmatrix} " \begin{pmatrix} 0 \\ -2 \end{pmatrix}$ |              |   | $\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 5 & 4 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix}$                                   |
|    |     | $\binom{y^2 - 9x}{x} = "\frac{1}{-2} \binom{4}{-5} = 2 "\binom{0}{-2}$                                   |              |   | M1 (DEP)                                                                                                                                 |
|    |     | $ \begin{pmatrix} y^2 - 9x \\ x \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} $                  |              |   | A1 for $\begin{pmatrix} -2\\ 2 \end{pmatrix}$                                                                                            |
|    |     |                                                                                                          | <i>x</i> = 2 |   | A1                                                                                                                                       |
|    |     | $y^2 - 9"x" = "-2"$ (substituting their value of                                                         |              |   | M1 – dependent on both previous M marks                                                                                                  |
|    |     | <i>x</i> , RHS must be a constant)                                                                       |              |   |                                                                                                                                          |
|    |     |                                                                                                          | $y = \pm 4$  | 6 | A1                                                                                                                                       |
|    |     |                                                                                                          |              |   | Total 8 marks                                                                                                                            |
| OR | (b) | $2\left(y^2 - 9x\right) + 2x = 0$                                                                        |              |   | M1 – two equations in $y^2$ and $x$                                                                                                      |
|    |     | $5\left(y^2 - 9x\right) + 4x = -2$                                                                       |              |   | A1                                                                                                                                       |
|    |     | 5(-x) + 4x = -2                                                                                          |              |   | M1 (DEP) – eliminate $y^2$ or x to obtain an                                                                                             |
|    |     |                                                                                                          |              |   | equation in x or $y^2$                                                                                                                   |
|    |     |                                                                                                          | <i>x</i> = 2 |   | A1                                                                                                                                       |
|    |     |                                                                                                          | $y = \pm 4$  |   | A1 – so can score a maximum of 5 out of 6 if<br>not using inverse                                                                        |

| 4 | (a)<br>(i) |                                                     | 12.445 kg or<br>12 445g                                                   | 1 | B1 – units not required throughout question                                                            |
|---|------------|-----------------------------------------------------|---------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------|
|   | (ii)       | 7550 - 4995                                         |                                                                           |   | M1                                                                                                     |
|   |            |                                                     | 2.555 kg or 2555g                                                         | 2 | A1                                                                                                     |
|   | (iii)      | 7450 - 5005                                         |                                                                           |   | M1 (= 2.445 kg or 2445g)                                                                               |
|   |            |                                                     | 2.45 kg or 2450g                                                          | 2 | A1                                                                                                     |
|   | (b)        | 0.2175, 0.2225, 10.1, 9.9                           |                                                                           |   | M1 any one correct bound (217.5, 222.5, 10100, 9900)                                                   |
|   |            | Largest number of bags = $\frac{10.1}{0.2175}$ (oe) |                                                                           |   | M1 – oe smallest number of bags = $\frac{9.9}{0.2225}$ or                                              |
|   |            | OR $217.5 \times 45 (= 9787.5)$                     |                                                                           |   | $222.5 \times 45 (= 10012.15)$ - allow values                                                          |
|   |            |                                                     |                                                                           |   | (10,10.1], [0.2175, 0.220), [9.9,10) or                                                                |
|   |            |                                                     |                                                                           |   | (0.220, 0.2225] for this mark                                                                          |
|   |            | 46.4(4) OR 9787.5 & 9900                            |                                                                           |   | A1 (Dependent on both M marks)<br>(For reference<br>44.49438 < bags < 46.43678)                        |
|   |            |                                                     | No <b>and</b> since needs 47 bags<br>to be sure that the jar is<br>filled | 4 | B1 (Dependent on previous three marks) – B0<br>if UB stated as 46 (not 47)                             |
|   |            |                                                     |                                                                           |   | <b>OR</b> Lower bound for the weight of 45 bags is less than the lower bound for the weight of the jar |
|   | <u> </u>   |                                                     |                                                                           |   | Total 0 marks                                                                                          |
|   |            |                                                     |                                                                           |   | 1 0141 7 marks                                                                                         |
|   |            |                                                     |                                                                           |   |                                                                                                        |
|   |            |                                                     |                                                                           |   |                                                                                                        |
|   |            |                                                     |                                                                           |   |                                                                                                        |
|   |            |                                                     |                                                                           |   |                                                                                                        |
|   |            |                                                     |                                                                           |   |                                                                                                        |

| 5 | Rewrite 45 as $3^2 \times 5$ (can be implied)                                                                              |       |   | M1                                                                                                                                                                                                                                                                                                                   |
|---|----------------------------------------------------------------------------------------------------------------------------|-------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $45^{1-2x} = 3^{2(1-2x)} \times 5^{1-2x}$                                                                                  |       |   | M1 (DEP)                                                                                                                                                                                                                                                                                                             |
|   | $\therefore \frac{3^{4x} \times 5^{3x+1} \times 3^{2(1-2x)} \times 5^{1-2x}}{3^2} = 5^4$ $\Rightarrow (3x+1) + (1-2x) = 4$ |       |   | M1 (DEP on both previous M marks) –<br>forming an equation using the powers of 5 only<br>– note that<br>4x+3x+1+2(1-2x)+(1-2x)-2=4 is M0                                                                                                                                                                             |
|   |                                                                                                                            | x = 2 | 4 | A1 – note that the correct answer is often seen<br>fortuitously so working must be checked<br>carefully                                                                                                                                                                                                              |
|   |                                                                                                                            |       |   | If no marks scored <b>and</b> correct answer stated<br>with no working <b>or</b> if candidates confirm that $x = 2$ via substitution with no algebraic working,<br>then award SC B1 (otherwise mark to scheme).<br>So e.g. those that earn M1 M1 then sub. $x = 2$<br>and verify this value holds score 2 marks only |
|   |                                                                                                                            |       |   | Total 4 marks                                                                                                                                                                                                                                                                                                        |

| 6 | (a)(i)     |                                                                                       | 18                                                 |   | B1                                                                                                                                                                                                |
|---|------------|---------------------------------------------------------------------------------------|----------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (ii)       |                                                                                       | -21                                                | 2 | B1                                                                                                                                                                                                |
|   | (b)<br>(i) | $hf(x) = \frac{6}{x+3}$                                                               |                                                    |   | M1                                                                                                                                                                                                |
|   |            | y(x+3) = 6 OR $x(y+3) = 6$                                                            |                                                    |   | M1 (DEP)                                                                                                                                                                                          |
|   |            |                                                                                       | $\left(hf\right)^{-1}:x \text{ a } \frac{6-3x}{x}$ |   | A1 (must be in terms of $x$ )                                                                                                                                                                     |
|   | (ii)       |                                                                                       | x = 0 is excluded                                  | 4 | B1 ft (oe) <b>NB:</b> ft on an inverse function (eg " $y =$                                                                                                                                       |
|   |            |                                                                                       |                                                    |   | ") which is of the form $\frac{ax+b}{cx+d}$ where d can be 0                                                                                                                                      |
|   | (c)        | haf(x) = 6                                                                            |                                                    |   | M1 Must be of the form                                                                                                                                                                            |
|   |            | $\lim_{x \to 3} (x) - \frac{1}{(x+3)^2 - 2(x+3) + 3}$                                 |                                                    |   | $(hgf(x) =) \frac{a}{b(x+3)^2 + c(x+3) + d}$                                                                                                                                                      |
|   |            | $6 = 2x^2 + 8x + 12$                                                                  |                                                    |   | M1 (DEP) - $hgf(x) = 2$ then removing a                                                                                                                                                           |
|   |            |                                                                                       |                                                    |   | trinomial quadratic dominator and expansion                                                                                                                                                       |
|   |            |                                                                                       |                                                    |   | of $(x+3)^2$ must contain 3 terms                                                                                                                                                                 |
|   |            | $2x^{2} + 8x + 6 = 0 \Longrightarrow (2x + 6)(x + 1) = 0$ $\Longrightarrow x = \dots$ |                                                    |   | M1 (not dependent on either of the previous M<br>marks) – solving a three term quadratic (if<br>using formula or completing the square must<br>lead to real roots) – requires a correct method to |
|   |            |                                                                                       |                                                    |   | solve their 3TQ (that is must have $(2x+a)(x+b)$                                                                                                                                                  |
|   |            |                                                                                       |                                                    |   | with $ab = 6$ or $2b + a = 8$ for their 6 and 8) – or<br>correct substitution into correct formula – must<br>lead to two real values of x                                                         |
|   |            |                                                                                       | x = -1                                             |   | A1 (cao)                                                                                                                                                                                          |
|   |            |                                                                                       | x = -3                                             | 5 | A1 (cao)                                                                                                                                                                                          |
|   |            |                                                                                       |                                                    |   | Total 11 marks                                                                                                                                                                                    |

| 7 | (a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 6 0 12 15 18                            | 1 | D1                                           |
|---|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---|----------------------------------------------|
| / | (a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5, 0, 9, 12, 15, 18                       | 1 | DI                                           |
|   | (b) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 (22) 16 (22)                            |   | B1                                           |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{20}$ (0e), $\frac{1}{20}$ (0e)  |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 14                                      |   | B1ft (the number of multiples of 3 stated in |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{0}{-1}$ (oe), $\frac{14}{-1}$ (oe) |   | Diff (the number of multiples of 5 stated in |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 20                                     |   | (a))                                         |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 , 17 ,                                  |   | B1                                           |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{20}$ (oe), $\frac{1}{20}$ (oe)  |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20 20                                     |   | 21                                           |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 (ca) $15$ (ca)                          | 4 | BI                                           |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{20}$ (00), $\frac{1}{20}$ (00)  |   |                                              |
|   | (c) | 4 16 14 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |   | M1                                           |
|   | (0) | $P(Ahmed wins) = "\frac{4}{3}" + "\frac{10}{3}" \times "\frac{14}{3}" \times "\frac{5}{3}"$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |   |                                              |
|   |     | 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71 0 204                                  |   | A1 (cao)                                     |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{250}$ , 0.284                   |   |                                              |
|   |     | P(Hani wing) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                       |   | M1                                           |
|   |     | $1(11111 \times 115) = 1(114 \times 175)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |   | 1911                                         |
|   |     | $\left  \begin{array}{c} \frac{10}{10} \times \frac{0}{10} + \frac{10}{10} \times \frac{14}{10} \times \frac{11}{10} \times \frac{11}{10} \times \frac{11}{10} \times \frac{11}{10} \right  \times \frac{11}{10} \times \frac{11}{$ |                                           |   |                                              |
|   |     | 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 359                                       |   | A1(cao)                                      |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1000}{1000}, 0.359$                |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | - |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hani wins as P(Hani wins)                 | 5 | AI (Dependent on both previous A marks)      |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > P(Ahmed wins), cso                      |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |   | Total 10 marks                               |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |   |                                              |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |   |                                              |

| 8 | (a) | 30 _ 100                                                                                                  |                             |   | M1                                                    |
|---|-----|-----------------------------------------------------------------------------------------------------------|-----------------------------|---|-------------------------------------------------------|
|   |     | $\sin \angle ABC = \sin 70$                                                                               |                             |   |                                                       |
|   |     | (20                                                                                                       |                             |   | M1 (DEP)                                              |
|   |     | $\angle ABC = \sin^{-1} \left( \frac{30 \times \sin^{-1} 0}{100} \right)$                                 |                             |   |                                                       |
|   |     |                                                                                                           | 16.4°                       | 3 | A1 (for reference: 16.3741004)<br>Accept awrt to 3 sf |
|   | (b) | <i>BC</i> _ 100                                                                                           |                             |   | M1                                                    |
|   |     | $\frac{1}{\sin(180 - ("\angle ABC"+70))} - \frac{1}{\sin 70}$                                             |                             |   |                                                       |
|   |     | OR                                                                                                        |                             |   |                                                       |
|   |     | $BC^2 = 100^2 + 30^2 - 2 \times 100 \times 30 \times \cos^2 \angle BAC''$                                 |                             |   |                                                       |
|   |     | $100 \times \sin(180 - ("\angle ABC" + 70))$                                                              |                             |   | M1 (DEP)                                              |
|   |     | $BC = \frac{1}{\sin 70}$                                                                                  |                             |   |                                                       |
|   |     | OR                                                                                                        |                             |   |                                                       |
|   |     | $BC = \sqrt{10900 - 6000 \cos^{\circ} \angle BAC^{\circ}}$                                                |                             |   |                                                       |
|   |     |                                                                                                           | 106 (cm)                    | 3 | A1 (for reference: 106.2047547)                       |
|   |     |                                                                                                           | 20 ( )                      | 1 | Accept awrt to 3 sf                                   |
|   | (c) |                                                                                                           | 20 (cm)                     | 1 |                                                       |
|   | (d) | $\mathbf{V}_{DCM} = \frac{1}{2} \times \left(\frac{1}{2} \times BC''\right) \times (DC'') \times \sin 70$ |                             |   | MI                                                    |
|   |     |                                                                                                           | 498, 499 (cm <sup>2</sup> ) | 2 | A1 (for reference: 498.9991215)                       |
|   |     |                                                                                                           |                             |   | Accept awrt to 3 sf                                   |
|   | (e) |                                                                                                           | 3                           | 1 | B1                                                    |
|   |     |                                                                                                           |                             |   | Total 10 marks                                        |
|   |     |                                                                                                           |                             |   |                                                       |
|   |     |                                                                                                           |                             |   |                                                       |
| 1 |     |                                                                                                           |                             |   |                                                       |

| 9 | (a) |                                                                                                                                                                                                                | Triangle A drawn        | 1 | B1 vertices of A are $(-5, 2), (-11, 0), (-7, 6)$                                                               |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---|-----------------------------------------------------------------------------------------------------------------|
|   | (b) | <ul><li>Either lengths of sides of <i>B</i> half that of <i>A</i> (so implying a scale factor of a half)</li><li>OR At least two construction lines through (1, 4) from <i>A</i> going past <i>A</i></li></ul> |                         |   | M1 – two correct points can imply this mark                                                                     |
|   |     | $(\mathbf{V}B = (4, 5), (7, 6), (5, 3))$                                                                                                                                                                       | Triangle <i>B</i> drawn | 3 | A2 (-1eeoo e.g. two points correct scores A1)<br>or A1 for a scale factor of -0.5 but not with<br>centre (1, 4) |
|   | (c) | Either lengths of sides of <i>C</i> same as <i>B</i><br>OR At least two construction lines through (3,1)                                                                                                       |                         |   | M1 – two correct points imply this mark                                                                         |
|   |     | $(\Delta C = (2, -3), (-1, -4), (1, -1))$                                                                                                                                                                      | Triangle C drawn        | 3 | A2 (-1eeoo e.g. two points correct scores A1)                                                                   |
|   | (d) |                                                                                                                                                                                                                | Enlargement             |   | B1 – note that more than one transformation stated scores no marks in this part                                 |
|   |     |                                                                                                                                                                                                                | (9,-8)                  |   | B1                                                                                                              |
|   |     |                                                                                                                                                                                                                | (Scale) factor 2        | 3 | B1                                                                                                              |
|   |     |                                                                                                                                                                                                                |                         |   | Total 10 marks                                                                                                  |

| 10 | (a)<br>(i) |                                                                                                       | $AB = \mathbf{b} - \mathbf{a}$                                  |   | B1                                                         |
|----|------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---|------------------------------------------------------------|
|    | (ii)       | $AC = "(\mathbf{b} - \mathbf{a})" - \frac{1}{2}\mathbf{a}$                                            |                                                                 |   | M1                                                         |
|    |            |                                                                                                       | $\overset{\text{unr}}{AC} = \mathbf{b} - \frac{3}{2}\mathbf{a}$ |   | A1 (simplified to a single term in <b>a</b> and <b>b</b> ) |
|    | (iii)      | $CD = \frac{1}{2}\mathbf{a} - \mathbf{b} - \mathbf{a}\mathbf{b} - 2\mathbf{a}$                        |                                                                 |   | M1                                                         |
|    |            | or $-''\left(\mathbf{b}-\frac{3}{2}\mathbf{a}\right)''-2\mathbf{a}$                                   |                                                                 |   |                                                            |
|    |            |                                                                                                       | $UUUT \\ CD = -\left(\frac{1}{2}\mathbf{a} + \mathbf{b}\right)$ |   | A1 (simplified to a single term in <b>a</b> and <b>b</b> ) |
|    | (iv)       | $AM = -2\mathbf{a} - \frac{1}{2} " \left( -\left(\frac{1}{2}\mathbf{a} + \mathbf{b}\right) \right) "$ |                                                                 |   | M1                                                         |
|    |            |                                                                                                       | $AM = -\frac{7}{4}\mathbf{a} + \frac{1}{2}\mathbf{b}$           | 7 | A1 (simplified to a single term in <b>a</b> and <b>b</b> ) |

| (b)<br>(i) | $U_{ON}^{\text{unr}} = \mathbf{a} + \lambda'' \left( -\frac{7}{4} \mathbf{a} + \frac{1}{2} \mathbf{b} \right)''$ |                                                                                        |   | M1 or equivalent complete method e.g.<br>ON = OD + DC + CB + BA + AN in terms of <b>a</b> ,<br><b>b</b> and $\lambda$                                                                                                                                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                  | $ON = \mathbf{a} \left( 1 - \frac{7\lambda}{4} \right) + \frac{\lambda}{2} \mathbf{b}$ | 2 | A1 (two terms in <b>a</b> and one term in <b>b</b> ) – note<br>that $ON = \mu \mathbf{b}$ is no marks in this part unless<br>they go and find $ON$ in terms of <b>a</b> , <b>b</b> and $\lambda$                                                                                                                                               |
| (ii)       | Component of <b>a</b> : $1 - \frac{7}{4}\lambda = 0$                                                             |                                                                                        |   | M1 or equivalent complete method e.g.<br>$AN = AO + ON = -\mathbf{a} + \mu \mathbf{b}$ and<br>unr<br>$AN = \lambda \left( "-\frac{7}{4}\mathbf{a} + \frac{1}{2}\mathbf{b} " \right)$<br>$\Rightarrow -\mathbf{a} + \mu \mathbf{b} = -\frac{7}{4}\lambda \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$ and compare<br>components for $\mathbf{a}$ |
|            |                                                                                                                  | $\lambda = \frac{4}{7}$                                                                |   | A1                                                                                                                                                                                                                                                                                                                                             |
|            | Component of <b>b</b> : $\frac{"\lambda"}{2} = \mu$                                                              |                                                                                        |   | M1 – comparing components for <b>b</b> (not dependent on previous M mark)                                                                                                                                                                                                                                                                      |
|            |                                                                                                                  | $\mu = \frac{2}{7}$                                                                    | 4 | A1                                                                                                                                                                                                                                                                                                                                             |
| (c)        | (area of $BNA = "\frac{5}{7}"\times \text{ area of } OAB$ )                                                      | 10 (sq units)                                                                          | 1 | B1                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                  |                                                                                        |   | Total 14 marks                                                                                                                                                                                                                                                                                                                                 |

| 11 |     | Penalise failure to round correctly ONCE                        |                                     |   |                                                                                                                                                                                    |
|----|-----|-----------------------------------------------------------------|-------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (a) |                                                                 | -0.47, 0.47, 2.53, 2.36             | 3 | B3 (-1eeoo)                                                                                                                                                                        |
|    | (b) | For reference:                                                  | Curve drawn                         | 3 | B3ft (NB: ft on their (a) values)<br>-1 mark for<br>straight line segments<br>each point missed<br>each missed segment<br>each point not plotted<br>each point incorrectly plotted |
|    |     | 4 '2.53'   4.5 '2.36'   5 1.67                                  |                                     |   | tramlines<br>very poor curve<br><b>NB:</b> Accuracy for both plotting and drawing is<br>$\pm \frac{1}{2}ss = 0.05$                                                                 |
|    | (c) | $-\frac{x^3}{6} + \frac{6x^2}{5} - \frac{3x}{2} > x^2 - 5x + 3$ |                                     |   | M1 (oe e.g. realising that the critical values are<br>the intersection of the two curves)                                                                                          |
|    |     |                                                                 | $0.85\pm0.05$                       |   | A1ft (one intersection of their graphs)                                                                                                                                            |
|    |     |                                                                 | $4.80\pm0.05$                       |   | A1ft (second intersection of their graphs)                                                                                                                                         |
|    |     |                                                                 | $0.85 \pm 0.05 < x < 4.80 \pm 0.05$ | 4 | A1ft (must be using strict inequalities)                                                                                                                                           |

| (d) | (Accurate values for <i>P</i> and <i>Q</i> are $(0.845, -0.511)$ and                                          |                |   | M1 Using their coordinates for $P$ and $Q$ (or any other points on their line)                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------|----------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (4.796, 2.022) respectively )                                                                                 |                |   |                                                                                                                                                          |
|     | Gradient = $\frac{"2.022" - ("-0.511")}{"4.796" - "0.845"}$                                                   |                |   |                                                                                                                                                          |
|     | (= 0.641)                                                                                                     |                |   |                                                                                                                                                          |
|     |                                                                                                               | 0.6, 0.7       | 2 | A1                                                                                                                                                       |
| (e) | (a = 0.641) :<br>e.g. $b = "-0.511" - "(d)" \times "0.845"$<br>e.g. $b = "2.022" - "(d)" \times "4.796"$ (oe) |                |   | M1 Using their gradient (which must be positive)<br>and their coordinates for $P$ or $Q$ (or any other point<br>on their line) to obtain a value for $b$ |
|     |                                                                                                               | b = -1.0, -1.1 | 2 | A1                                                                                                                                                       |
|     |                                                                                                               |                |   | Total 14 marks                                                                                                                                           |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom