Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4MB1_01R_2001_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks
o B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

o cao - correct answer only
o ft - follow through
o isw - ignore subsequent working
o SC-special case
o oe - or equivalent (and appropriate)
o dep-dependent
o indep - independent
o awrt - answer which rounds to
o eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255 ; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question	Working	Answer	Mark	Notes	
$\mathbf{1}$		$\frac{7.5}{60 \times 24}(\mathrm{oe})$		$\mathbf{2}$	M1
			$\frac{1}{192}$		A1
					Total 2 marks

$\mathbf{2}$	$2 \times(1)^{2}-5$ or $2 \times 3^{2}-5$ oe		$\mathbf{2}$	M1 or for one correct value	
			$-3,13$		A1
					Total 2 marks

3	$\begin{aligned} & 2(3-x)=3 x \\ & \text { OR } \quad x=\frac{2 \times 3}{3+2} \\ & \text { OR } \quad \frac{1}{x}=\frac{5}{6} \end{aligned}$		2	M1 remove denominators OR a correct expression for x OR $\frac{1}{x}$ (must be a single fraction)
		$x=\frac{6}{5}, 1 \frac{1}{5}, 1.2$		A1 oe
				Total 2 m

$\mathbf{4}$		$2 x(x-3 y)+5 w(x-3 y)$ OR $\quad x(2 x+5 w)-3 y(2 x+5 w)$		$\mathbf{2}$	M1
			$(2 x+5 w)(x-3 y)$		A1
					Total 2 marks

$\mathbf{5}$	(i)		16	$\mathbf{2}$	B1
	(ii)		Eg. Range is " $y \leq 16 "$ OR $(x) \leq 16$		B1 allow $(-\infty, 16]$ or $\{\mathrm{g}: \mathrm{g} \leq 16\}$ or $\mathrm{g} \leq 16$ (No mark for $x \leq 16)$

$\mathbf{6}$		$1.25 \ldots \times 10^{n}$ OR $2^{-3} \times 10^{-148}$ OR $0.125 \times 10^{-148}(\mathrm{oe})$	$\mathbf{2}$	M 1		
			1.25×10^{-149}		A 1	Total 2 marks

$\mathbf{7}$				$\mathbf{2}$	M1 One term correct (allow unsimplified)
			$x^{3}+\frac{16}{x^{5}}$		A1 Fully correct oe eg $x^{3}+16 x^{-5}$

8	(a)		0 or None (oe)		1	B1	
	(b)		2		1	B1	
							Total 2 marks
9		$\left.\begin{array}{llll} \hline \text { One of } & & \\ -14<2 x & \text { (oe) } & \text { OR } & 8 x \leq 16 \end{array} \quad \text { (oe) }\right)$	3		M1		
		Both			M1(DEP)		
			$-7<x \leqslant 2$		A	ept $-7<x$ and $x \leq 2$ oe	
							Total 3 marks

$\mathbf{1 0}$	Total weight of the 800 large plates $=800 \times 600(=480000)$ OR Total weight of the small plates $=$ $(2500-800) \times 450$ $(=765000)$	$\mathbf{3}$	M1 for a method to find one of the totals.	
	$"(2500-800) \times 450 "+" 800 \times 600 "$ 2500	M1(DEP) NB: DEP on correct methods for both weights		
		498		A1 (cao)

11		$\left.\begin{array}{c} 42=2 \times 3 \times 7 \\ 54=2 \times 3^{3} \\ 66=2 \times 3 \times 11 \end{array}\right\}$ OR Correct column		66 33 11 11 42,54 or 66		3	M1 (may be nu ladder) OR: (NB: 2 an		end of a factor tree or in a factor placed by 6) 66 33 11
	(i)				LCM $=4158$		A1 dep on M1		
	(ii)				HCF $=6$		A1 dep on M1		
							NB: SC Deduc HCF are swapp		if correct values for LCM and
									Total 3 marks

$\mathbf{1 2}$		Prob (not arriving early $)=0.85+$ 0.07 OR $0.85 \times 500+0.07 \times 500 \quad(=425+35)$		$\mathbf{3}$	M1
	No. of trains arriving early $=$ $(1-(" 0.85+0.07 ")) \times 500$ OR $500-(" 425 "+" 35 ")$		M1(DEP)		
		40 (trains)		A1	Total 3 marks

$\mathbf{1 3}$			$3 y-2 x \geq 3$	$\mathbf{3}$	B1 oe eg $y \geq \frac{2 x}{3}+1$
			$y \geq 6-3 x$		B1 oe eg $y+3 x \geq 6$
			$x+y \leq 6$		B1 oe eg $y \leq 6-x$
				NB: Allow $>$ for \geq and $<$ for \leq	

$\mathbf{1 4}$			$\{a, b\},\{a, c\},\{a, d\},\{b, c\}$,	$\mathbf{3}$	B3 (-1eeoo)
					NB: Penalise extra permutations once only

| 15 | $\frac{x(7 x-3)-2 x(5 x-9)}{6}$
 OR $\frac{x}{6}[(7 x-3)-2(5 x-9)]$ | $\mathbf{3}$ | M1 oe |
| :--- | :--- | :--- | :--- | :--- |
| OR $\frac{7 x^{2}}{6}-\frac{3 x}{6}-\frac{5 x^{2}}{3}+\frac{9 x}{3}$ | | | M1(DEP) |
| | $\frac{7 x^{2}-3 x-10 x^{2}+18 x}{6}$
 OR $\frac{x}{6}[7 x-3-10 x+18]$ | | |

$\mathbf{1 6}$		Length of other side is $\frac{28-2 \times 8}{2}(\mathrm{oe})(=6)$		$\mathbf{3}$	M1
		Length of diagonal $=\sqrt{8^{2}+" 6 "^{2}}$			M1 (DEP)
			10		A1

| 17 | $\sin 50^{\circ}=\frac{A D}{20}$ or $\cos 50^{\circ}=\frac{D C}{20}(\mathrm{oe})$
 OR Area of $\triangle A B C=\frac{1}{2} \times 20 \times 30 \times \sin (40)(=192.836 \ldots)$ | 3 | M1
 $(A D=15.321$ and $D C=12.856)$
 (oe for both lengths) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\frac{1}{2} \times " D C " \times(30+" A D ")$
 OR $\frac{1}{2} \times 20 \times " D C " \times \sin 50^{\circ}+" 192.836 \ldots "$
 OR
 $" 12.856 " \times " 15.321 "+(0.5 \times " 12.856 " \times(30-" 15.321 "))$ | M1 (DEP) | | |
| | | 291 | A1 |

18	$(\sqrt{35}+3 \sqrt{5}-2 \sqrt{7}-6) \times(\sqrt{5}+2)$		3	M1 showing clear intention to Remove denominator by multiplying numerator and denominator by $(\sqrt{5}+2)$
	$\sqrt{35 \times 5}+3 \sqrt{5 \times 5}-2 \sqrt{7 \times 5}-6 \sqrt{5}+2 \sqrt{35}+6 \sqrt{5}-4 \sqrt{7}-12$ oe			M1(DEP) Expanding numerator (allow one error) oe OR
		$3+\sqrt{7}$		A1(DEP on M2)
	Alternative method			
	$\begin{aligned} & \frac{\sqrt{5}(\sqrt{7}+3)-2(\sqrt{7}+3)}{\sqrt{5}-2} \text { or } \frac{\sqrt{7}(\sqrt{5}-2)+3(\sqrt{5}-2)}{\sqrt{5}-2} \text { or } \\ & \frac{(\sqrt{5}-2)(\sqrt{7}+3)}{\sqrt{5}-2} \end{aligned}$			M2 for correct factorisation
		$3+\sqrt{7}$		A1(DEP on M2)
				Total 3 marks

19	35 miles per gallon $\rightarrow \frac{1}{35}$ gallons per mile OR $35 \mathrm{mpg} \times 1.609 \text { (= }=56.315 \mathrm{~km} / \text { gallon })$ OR $100 \div 1.609(=62.1504 \ldots)$		4	M1 (possibly seen in an expression) (ie invert 35) mpg to $\mathrm{km} /$ gallon number of miles in 100 km
	$\begin{aligned} & \frac{4.546}{35} \text { (litres/mile) } \\ & \text { OR } \frac{1}{35} \times \frac{100}{1.609} \text { (gallons } / 100 \mathrm{~km} \text {) oe eg "62.1504" } \div 35(=1.7757 \ldots \text {...) } \\ & \text { OR } \\ & \text { " } 56.315 \mathrm{~km} / \text { gallon" } \div 4.546 \\ & (=12.3878 \mathrm{~km} / \text { litre }) \end{aligned}$			M1(DEP) Litres per mile OR gallons per 100 km OR km per litre
	$\frac{1}{35} \times 4.546 \times \frac{100}{1.609}$ oe eg "1.7757... $\times 4.546$ (litres/ 100 km) OR $100 \div 12.3878$			M1(DEP) for a fully correct method (all units converted)
		$\begin{aligned} & \text { awrt } \\ & 8.07 \end{aligned}$		A1
				Total 4 marks

$\mathbf{2 0}$	(a)		$\left(\begin{array}{cc}19 & -27 \\ -45 & 64\end{array}\right)$	$\mathbf{2}$	B2(-1eeoo in a matrix of the correct order)
	(b)		$\left(\begin{array}{rr}12 & -17 \\ 31 & -44 \\ -23 & 33\end{array}\right)$	$\mathbf{2}$	B2(-1 eeoo in a matrix of the correct order)

21	(a)		240	1	B1 (No. of passengers in $95 \leq w<115$)
	(b)	(Ht. of $50 \leq w<60$ bar) $-\mathrm{FD}=8$ (Ht. of $80 \leq w<95$ bar) $-\mathrm{FD}=18$ (Ht. of $95 \leq w<115$ bar) $-\mathrm{FD}=12$ (NB: $1 \mathrm{~cm}=2$ units on FD axis)	Completely correct histogram	3	M1 for a correct bar OR a correct scale for FD
					A1 for 2 correct bars OR one correct bar and correct scale for FD
					A1 for all bars correct and correct scale for FD
					Total 4 marks

$\mathbf{2 2}$	(a)(i)		10	$\mathbf{2}$	B1
	(ii)		Farmers who keep cattle, sheep and goats		B1 oe
	(b)(i)		15	$\mathbf{2}$	B1
	(ii)		Farmers who keep sheep but not goats and cattle		B1 oe eg sheep farmers only

$\mathbf{2 3}$		$96=k \times 4^{3}$		$\mathbf{4}$	M1
		$(s(6)-s(5)=) " \frac{3}{2} " \times 6^{3}-" \frac{3}{2} " \times 5^{3}$ $(324-187.5)$ OR " $\frac{3}{2} "(216-125)$		A1 oe eg $k=1.5, k=96 / 4^{3}$ (Might be seen in working)	
				M1 (DEP on M1)	
		136.5		A1 Accept awrt 137	

24	(a)	$100000: 40000$ oe OR $1 \mathrm{~km}^{2}=1 \times 10^{10} \mathrm{~cm}^{2}$ OR $2.4 \mathrm{~km}^{2}=2.4 \times 10^{10} \mathrm{~cm}^{2}$ OR $1 \mathrm{~cm}^{2}$ represents $0.16 \mathrm{~km}^{2}$ oe		3	M1 or 1: 1600000000 oe Statement or use of area equivalence or ratio
		$\begin{aligned} & \left(\frac{100000}{40000}\right)^{2} \times 2.4 \text { oe eg } \frac{2.4}{0.16} \text { OR } \\ & 2.4 \times 100000^{2} \div 1600000000 \text { oe } \\ & \text { OR } \\ & 0.16 A=2.4 \end{aligned}$			M1 a fully correct method to find the area of the field in cm^{2} or a fully correct equation for the area of the field
			15		A1
	(b)	$\begin{equation*} \frac{n}{100000} \times 8=2 \tag{oe} \end{equation*}$		2	M1 oe eg (2×100000) $\div 8$
			25000		A1
					Total 5 marks

$\mathbf{2 5}$		$w^{2}=\frac{x-y-3 w^{2}}{5 x+y-1}$		M1 (Squaring)	
		$w^{2}(5 x+y-1)=\left(x-y-3 w^{2}\right)$			M1 (DEP) (Remove denominator)
	$5 x w^{2}+w^{2} y-w^{2}=x-y-3 w^{2}$			M1 (DEP) (Expanding - allow one error only)	
	$x\left(5 w^{2}-1\right)=-w^{2} y-y-2 w^{2}$		M1 (DEP) (Collecting terms in x on one side and factorising and other terms the other side -ft one error)		
			$x=-\frac{w^{2} y+y+2 w^{2}}{5 w^{2}-1}$		A1 (oe) eg $x=\frac{w^{2}(-y-2)-y}{5 w^{2}-y}$

26	Method 1			
	$\angle A C D=30$		5	M1
	$\angle A D C=180-30-30(=120)$			M1
	$\begin{aligned} & \angle A B C=180-120(=60) \text { and } \\ & \angle B A C=90 \end{aligned}$	90		A1 dep on M2 for showing a full method to $\angle B A C=90^{\circ}$
		And full reasons for method used		B2 dep on A1 for all correct reasons for method used: (allow \angle for angle and \vee for triangle) Base angles of isosceles triangle Angles in triangle total 180° angles in triangle total 180° Opposite angles in cyclic quadrilateral total 180° BC is a diameter as the angle in a semi-circle is a right angle oe BC is a diameter as the angle at the centre is double the angle at the circumference oe (B1 dep on M1for one reason that is a circle theorem)
	Method 2			
	$\angle A C D=30$		5	M1
	$\angle A C B=30$			M1
	$\angle B A C=180-(30+30+30)=90$	90		A1 dep on M2 for showing a full method to $\angle B A C=90^{\circ}$
		And full reasons for method used		B2 dep on A1 for all correct reasons for method used: (allow \angle for angle and \vee for triangle) Base angles of isosceles triangle Alternate angles Opposite angles in cyclic quadrilateral total 180° BC is a diameter as the angle in a semi-circle is a right angle oe $\underline{B C}$ is a diameter as the angle at the centre is double the angle at the circumference oe (B1 for one reason that is a circle theorem)
				Total 5 marks

$\mathbf{2 7}$		Time to travel 35 m at $5 \mathrm{~m} / \mathrm{s}=\frac{35}{5} \mathrm{~s}$		$\mathbf{5}$	M1
		$\frac{1}{2} \times 5 \times t=10 \quad(\mathrm{oe})$	7 s		A1 shown clearly in working or graph correctly drawn
			4 s		M1
		A1		B1 Line 1: Straight line drawn from (0, 5) to (7, 5) Line 2: Straight line drawn from (7, 5) to $(7+4,0)$ ie (11, 0)	

$\mathbf{2 8}$	(a)	πr OR $2 \pi\left(\frac{r}{2}\right)$		$\mathbf{3}$	M1
		$\pi r+2 \pi\left(\frac{r}{2}\right) \mathrm{oe}$		M1 (DEP) for complete method to find perimeter of shaded region	
			$2 \pi r$		A1
	(b)	$F H=r$ and $\angle F O H=90^{\circ}$	4	B1	
		(Area of $\triangle F H O=) \frac{1}{2} \times \frac{r}{2} \times r$ oe eg $0.25 r^{2}$		M1	
		\therefore Area of $F P B Q H=\frac{" 90 "}{360} \times \pi r^{2}-\frac{1}{2} \times \frac{r}{2} \times r$			M1 (DEP) for complete method to find area $F P B Q H$
		$\frac{r^{2}}{4}(\pi-1)$		A1 (oe)	

$\mathbf{2 9}$	(a)	$8^{2}=6^{2}+7^{2}-2 \times 6 \times 7 \times \cos \angle A C B$		3	M1
	(b)	$\angle A C B=\cos ^{-1}\left(\frac{6^{2}+7^{2}-8^{2}}{2 \times 6 \times 7}\right)$ $\tan 25=\frac{4}{h} \quad$ oe eg $h=\sqrt{\left(\frac{8 \sin 65}{\sin 50}\right)^{2}-4^{2}(=8.578 \ldots)}$	M1 (DEP)		
		Area of VABC $=\frac{1}{2} \times 6 \times 7 \times \sin " \angle A C B "$ $(=20.311)$		45.5	
Volume of $A B C D=$ $\frac{1}{3} \times$ "Area of $V A B C " \times " h "$	M1 (oe, where h is the perpendicular height of $\triangle A D B$ and so of the pyramid)				
		58.1	M1 (award even if part of a calculation)		

