Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE In Mathematics B (4MB1)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4MB1_01_2001_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
o M marks: method marks
o A marks: accuracy marks
o B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
o cao - correct answer only
o ft - follow through
o isw - ignore subsequent working
o SC-special case
o oe - or equivalent (and appropriate)
o dep-dependent
o indep - independent
o awrt - answer which rounds to
o eeoo-each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255 ; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer given on the answer line. If no answer appears on the answer line, or there is no answer line, mark both methods then award the lower number of marks.

If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question	Working	Answer	Mark	Notes	
$\mathbf{1 0}$	(a)		$\left(\begin{array}{cc}7 & -3 \\ 8 & -1\end{array}\right)$	3	B1
$\mathbf{1 1}$		$\left.\begin{array}{lll}-\frac{5(2+5 x)-2(3-2 x)}{(3-2 x)(2+5 x)}(\text { oe }) & -6 \\ -8 & 10\end{array}\right)$		B2 Fully correct B1 for 2 or 3 correct elements in a 2×2 matrix	
		$\frac{10+25 x-6+4 x}{(3-2 x)(2+5 x)}$		M1 for correct single fraction	

Question	Working	Answer	Mark	Notes
12	$4 x^{3}-8 x^{2}-12 x=(2 x+k) Q(x)$		3	B1 Eliminate 11 from both sides allow $Q x$ rather than $Q(x)$
	Method 1 $4 x(x-3)(x+1) \text { or } x(2 x-6)(2 x+2)$ or $(2 x+2)\left(2 x^{2}-6 x\right)$ or $x(4 x-12)(x+1) \text { or } x(x-3)(4 x+4)$			M1 Factorise to three linear terms or take out $(2 x+2)$ as common factor. To award this mark their factors must expand to give 2 out of the 3 terms correct
	Method 2 $\begin{aligned} & 2 a+2 k=-8 \text { and } a k=-12 \text { or } \\ & 2 a+2 k=-8 \text { and } a k+2 b=-12 \text { and } \\ & k b=0 \text { oe } \end{aligned}$			(M1) Equate coefficients after expanding $(2 x+k) Q(x)$
	Method 3 $4\left(\frac{-k}{2}\right)^{3}-8\left(\frac{-k}{2}\right)^{2}-12\left(\frac{-k}{2}\right)=0 \mathrm{oe}$			(M1) use factor theorem with $x=-\frac{k}{2}$
	Method 4 $k^{2}+4 k-12=0 \mathrm{oe}$			(M1) use long division equate remainder to zero
		$k=2$		A1 NB $k=2$ seen with no incorrect statements scores all 3 marks. $k=-6$ and $k=0$ lose this final mark only.
				Total 3 marks
13	$\frac{27 x^{6} y^{9}}{9 x y^{2}}$		3	M1 Expansion of numerator - at least two components correct
		" 3 " " $x^{5 "}$ " $y^{7 \prime \prime}$		M1 indep. Correct division from their numerator with at least two components correctly following through.
		$3 x^{5} y^{7}$		A1 Fully correct
				Total 3 marks

Que	Working	Answer	Mark	Notes
14	$\begin{array}{crr} 12 x+8 y=32 & \text { or } & 27 x+18 y=72 \\ -12 x+27 y=66 & -8 x+18 y=44 \\ 35 y=98 & 35 x=28 & \text { or } \\ x=\frac{8-2 y}{3} \text { giving }-4\left(\frac{8-2 y}{3}\right)+9 y=22 \text { or } \\ x=\frac{9 y-22}{4} \text { giving } 3\left(\frac{9 y-22}{4}\right)+2 y=8 \text { or } \\ y=\frac{8-3 x}{2} \text { giving }-4 x+9\left(\frac{8-3 x}{2}\right)=22 \text { or } \\ y=\frac{4 x+22}{9} \text { giving } 3 x+2\left(\frac{4 x+24}{9}\right)=8 \end{array}$		4	M1 Fully correct method to obtain equation in a single variable. Allow a maximum of 1 arithmetic or sign error.
		$x=\frac{4}{5} \text { or } y=\frac{14}{5}$		A1 Allow $x=0.8$ or $y=2.8$
	$3 \times \frac{4}{5}+2 y=8 \text { or } 3 x+2 \times \frac{14}{5}=8$			M1 dep Fully correct method to obtain equation in the other variable following through their first result.
		$x=\frac{4}{5} \text { and } y=\frac{14}{5}$		A1 Allow $x=0.8$ and $y=2.8$
				Total 4 marks
15		$y \geq 6-2 x$	4	B1 Allow strict inequalities
		$y \leq 5+x$		B1 Allow strict inequalities
	Method to find point of intersection of $y=6-2 x$ with the x-axis. $\operatorname{Eg} 6-2 x=0$ seen			M1 Allow (3,0) or $x=3$ stated
		$x \leq 3$		A1
				SC Allow a total of B2 for $y \leq 6-2 x, y \geq 5+x$ and $x \geq 3$
				Total 4 marks

Que	Working	Answer	Mark	Notes
16	$400^{2}: 3^{2} \text { or }\left(\frac{400}{3}\right)^{2} \text { or }\left(\frac{3}{400}\right)^{2}$		4	M1 state or use scale factor squared
	$7200 \times\left(\frac{400}{3}\right)^{2} \text { or }\left(\frac{3}{400}\right)^{2}=\frac{7200}{x} \mathrm{oe}$			M1 dep correct method to find surface area M2 for of ship condone $72 \times\left(\frac{400}{3}\right)^{2}$ $0.72 \times\left(\frac{400}{3}\right)^{2}$
	$\div 100^{2}$			
		12800		A1
				Total 4 marks
17	$\begin{aligned} & \left(B D^{2}=\right) 6.5^{2}-2.5^{2}(=36) \\ & \text { Area of } A B D=\frac{1}{2}(2.5)(B D)(=7.5) \\ & \text { Area of } B C D=\frac{1}{2}(4.2)(B D) \sin 35 \\ & (=7.23) \\ & \text { Area of } A B C D= \\ & \frac{1}{2}(2.5)(B D)+\frac{1}{2}(4.2)(B D) \sin 35 \end{aligned}$		4	M3 Completely correct method to find area $A B C D$ or M2 Completely correct method to find the area of $A B D$ or $B C D$ or M1 Correct method to find $B D$ or $B D^{2}$ For Area of $A B D$ allow $\frac{1}{2}(6.5)(2.5) \sin B A D$ with $\cos B A D=\frac{2.5}{6.5}(B A D=67.4)$
		awrt 14.7		A1
				Total 4 marks
18	$\|\mathbf{p}\|^{2}=x^{2}+(2 x-1)^{2}$ and $\|\mathbf{q}\|^{2}=(-9)^{2}+5^{2}$		4	M1 Attempt at both moduli or both moduli squared (or equivalent)
	$\|\mathbf{p}\|=\|\mathbf{q}\| \Rightarrow 5 \mathrm{x}^{2}-4 x-105(=0)$			M1 dep. Forming three term quadratic in x allow a maximum of 1 arithmetic or sign error
	$(5 x+21)(x-5)(=0)$			M1 dep. Factorising trinomial quadratic expression must expand to give 2 of 3 terms correct or completely correct substitution into a completely correct formula.
		$x=-\frac{21}{5}(\mathrm{oe})$		A1 Do not allow if $x=5$ given and not rejected allow -4.2
				Total 4 marks

Question		Working	Answer	Mark	Notes
19		$\frac{30}{360}(2 \pi)(O B) \text { or } \frac{30}{360}(2 \pi)(O A)(\mathrm{oe})$		4	M1 Allow $O A=r$ or $\frac{1}{2} r$ or $O B=r$ or $2 r$ Allow any variable used in place of r
		$\frac{30}{360}(2 \pi)(2(O A))+\frac{30}{360}(2 \pi)(O A)+2(O A)=10$			M1 dep. Deriving an equation in a single unknown must include all 4 sides of the shape.
		$\frac{1}{2} \pi O A+2 O A=10(\mathrm{oe})$			M1 Simplify to equation of the form $a \pi O A+b O A=c$ or $a \pi O B+b O B=c$ Where $a, b, c \neq 0$
			$\frac{20}{4+\pi} \text { oe }$		A1 ISW final answer given as a decimal
					Total 4 marks
20	(a)		$14<T \leq 17$	5	B1 Condone any indication of interval 14 to 17 (eg $14<T<17$ or 14 to 17)
	(b)	Use of at least 3 correct midpoints			M1
		$\sum \mathrm{ft}=6.5 \times 3+9.5 \times 12+12.5 \times 12+15.5 \times 16+$ $18.5 \times 6+21.5 \times 1(=664)$ or $\Sigma f T=19.5+114+150+248+111+21.5$			M1 indep values of T in the interval, including ends and used consistently (eg all lowest value) allow one error/omission
		$\begin{aligned} & \text { "6.5×3+9.5×12+12.5×12+} \\ & \frac{15.5 \times 16+18.5 \times 6+21.5 \times 1 \text { " }}{50}(=13.28) \\ & \hline \end{aligned}$			M1 dep Depends on previous M mark.
			13		A1 cao
					Total 5 marks

Question		Working	Answer	Mark	Notes
21	(a)		$\mathrm{g}(\mathrm{x}) \geq 1$	5	B1 Allow y or g but not x. Allow set notation but must indicate ≥ 1
	(b)	$\begin{aligned} & \operatorname{gf}(2)=g(1) \text { or } 2(3 \times 2-5)^{2}+1 \text { or } \\ & 2(3 x-5)^{2}+1 \end{aligned}$			M1 Correct order. An answer of 3 with no incorrect working implies this mark
		$\mathrm{gf}(2)=3$			A1
		$3 x-5=3$			M1 Dep.
			$x=\frac{8}{3} \mathrm{oe}$		A1 Allow 2.67 or better ISW further rounding
					Total 5 marks
22		UB: $a=8.455, b=1.935, c=3.4155$		5	M1 Any two correct UB seen
		LB: $a=8.445, b=1.925, c=3.4145$			M1 Any two correct LB seen
		$\mathrm{UB}=\sqrt{\frac{\text { "8.455"-"1.925" }}{" 3.4145 "}}$			M1 indep Must use $8.45<a \leq 8.455$, $1.925 \leq b<1.93$ and $3.4145 \leq c<3.415$
		$L B=\sqrt{\frac{" 8.445 "-" 1.935 "}{" 3.4155 "}}$			M1 indep Must use $8.445 \leq a<8.45$, $1.93<b \leq 1.935$ and $3.415<c \leq 3.4155$
		$\mathrm{UB}=1.382907 \ldots$, LB $=1.380585 \ldots$	1.38		A1 Must see both values given to at least 3 d.p
					Total 5 marks

Question	Working	Answer	Mark	Notes	
$\mathbf{2 3}$	(a)	$a(10-25 b)$ or $5(2 a-5 a b)$		6	M1

Que	Working	Answer	Mark	Notes
26	$15-x, x, 9-x, 12$ seen on Venn diagram or $15-x+x+9-x+12=30 \mathrm{oe}$		6	M1 Venn diagram or setting up an equation in one variable. May be inferred from $x=6$ seen.
	($x=$) 6			A1 Value may be seen in Venn diagram
	"6" ${ }^{\text {c }}$ seen			M1 dep May be embedded in working
	$\frac{" 6 "}{9} \times \frac{" 6 "-1}{8} \times \frac{9-" 6 "}{7}\left(=\frac{5}{18}\right) \text { oe }$			M1 dep May be embedded in working allow numerators and denominators in any order
	$3 \times \frac{\text { "6" }}{9} \times \frac{" 6 "-1}{8} \times \frac{9-76 "}{7}$ oe			M1 dep Fully correct expression. Allow numerators and denominators in any order
		$\frac{15}{28}$		A1 awrt 0.536
				Total 6 marks

Question	Working	Answer	Mark	Notes
27	$A B=A O+O B=-3 \mathbf{a}+5 \mathbf{b}$		5	B1 may be embedded within working
	$\text { uuur }=\frac{3}{4}("-3 \mathbf{a}+5 \mathbf{b} ") \text { oe or } \overrightarrow{B C}=-\frac{1}{4}\left("-3 \mathbf{a}+5 \mathbf{b}^{\prime \prime}\right) \text { oe }$			M1
	$\stackrel{\text { unur }}{O C}=\stackrel{\text { unur }}{O A}+\stackrel{\text { unu }}{A C}=3 \mathbf{a}+\frac{3}{4}\left("-3 \mathbf{a}+5 \mathbf{b}^{\prime \prime}\right)$ oe or $\stackrel{\mathrm{unur}}{O C}=\stackrel{\mathrm{unur}}{O B}+\stackrel{\mathrm{unu}}{B C}=5 \mathbf{b}-\frac{1}{4}\left("-3 \mathbf{a}+5 \mathbf{b}^{\prime \prime}\right)$ oe or $\stackrel{\text { unur }}{O D}=\stackrel{\text { unur }}{O B}+B D=5 \mathbf{b}+\frac{7}{4} \mathbf{a}+\frac{15}{4} \mathbf{b}$ oe or $\stackrel{\text { unur }}{C D}=C B+B D=\frac{1}{4}\left(\right.$ unur $\left.^{\prime \prime}-3 \mathbf{a}+5 \mathbf{b}^{\prime \prime}\right)+\frac{7}{4} \mathbf{a}+\frac{15}{4} \mathbf{b}$ oe			$\begin{aligned} & \mathrm{M} 1 \\ & \left(\overrightarrow{O C}=\frac{3}{4} \mathbf{a}+\frac{15}{4} \mathbf{b}\right) \\ & \left(\overrightarrow{O D}=\frac{7}{4} \mathbf{a}+\frac{35}{4} \mathbf{b}\right) \\ & \left(\begin{array}{l} \text { una } \end{array}\right) \end{aligned}$ Finding any one of $\overrightarrow{O C}, \overrightarrow{O D}$ or $\overrightarrow{C D}$ Only follow through their result for $\overrightarrow{A B}$
				M1 Finding a second vector from $\overrightarrow{O C}, \overrightarrow{O D}$ or $\overrightarrow{C D}$ Only follow through their result for $\overrightarrow{A B}$
		3:4 oe		A1 Allow any equivalent numerical ratio eg. $\frac{3}{4}: 1$ PTO for alternative methods

Question	Working	Answer	Mark	Notes
27 ALT 1	$\overrightarrow{O C}=3 \mathbf{a}+\mu(-3 \mathbf{a}+5 \mathbf{b})$		(B1) $-3 \mathbf{a}+5 \mathbf{b}$ seen (M1) Correct expression for $\overrightarrow{O C}$	
	$\overrightarrow{O C}=\lambda(\mathbf{a}+\mathbf{5 b})$			(M1)
	$\lambda=\frac{3}{4}$			(M1)
		$3: 4$ oe		(A1) Allow any equivalent numerical ratio eg. $\frac{3}{4}: 1$
27 ALT 2	$\overrightarrow{O C}=3 \mathbf{a}+\mu(-3 \mathbf{a}+5 \mathbf{b})$		(B1) $-3 \mathbf{a}+5 \mathbf{b}$ seen (M1) Correct expression for $\overrightarrow{O C}$	
	$\overrightarrow{O C}=\lambda\left(\frac{7}{4} \mathbf{a}+\frac{35}{4} \mathbf{b}\right)$		(M1)	
	$\lambda=\frac{3}{7}$		(M1)	
		$3: 4$ oe		(A1) Allow any equivalent numerical ratio eg. $\frac{3}{4}: 1$

