Pearson

Mark Scheme (Results)
Summer 2019

Pearson Edexcel International GCSE
In Mathematics B (4MB1)
Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4MB1_02_2019_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra. Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question		Working	Answer	$\begin{gathered} \text { Mark } \\ \hline 2 \end{gathered}$	Notes M1 Allow $23+47+56+48+26$ for denominator.
1	(a)	$\left(\frac{48}{200}\right) \times 360$			
			86.4		A1 Ignore anything after number (eg. \%) Allow 86 with working seen.
	(b)	$\begin{aligned} & 23 \times 15+47 \times 25+56 \times 35+ \\ & 48 \times 45+26 \times 55(=7070) \\ & \text { Or } \\ & 345+1175+1960+2160+ \\ & 1430(=7070) \end{aligned}$		4	M2 For M2 require exactly 5 products with at least 4 correct. There must be a clear intention to add seen. 7070 seen gains M2. M1 for freq. \times consistent value within interval For M1 Require $4-6$ products with at least 3 correct frequency \times consistent values within their intervals (allow minimum value for this) Products seen beside the table can be awarded this mark if an attempt to total them is seen.
		$\frac{" 7070 "}{200}$			M1 Dependent on at least M1 already gained.
			35		A1 Allow 35.3, 35.35 or 35.4 with working seen. ISW incorrect rounding after any of these values seen. Correct answer with no incorrect working scores full marks.
					Total 6 marks

Question		Working	Answer	$\frac{\text { Mark }}{2}$	Notes
2	(a)	$2.35 \times 10^{7} \times 0.48$			M1 NB $2.35 \times 10^{7} \times 48 \%$ is not sufficient for this mark unless it leads to the correct answer.
			$\begin{gathered} 1.128 \times 10^{7} \text { or } \\ 11280000 \\ \hline \end{gathered}$		A1 Allow 1.13×10^{7} oe eg 11.3×10^{6}
	(b)	$\left(\frac{11280000 "}{10} \times 3\right)$		2	M1
			3.384×10^{6}		A1 Allow answers between 3.38×10^{6} and 3.39×10^{6} inclusive must be in standard form. Allow a final answer of 3.4×10^{6} if an acceptable value is seen not written in standard form.
	(c)	"3 384000 " 1.125		2	M1 NB " 3384000 " $\times 112.5 \%$ is not sufficient for this mark unless their answer is equal to their value $\times 1.125$
			$\begin{gathered} 3.807 \times 10^{6} \text { or } \\ 3807000 \end{gathered}$		A1 Allow answers between 3.8×10^{6} and 3.814×10^{6} inclusive oe
	(d)	$2.5 \times 10^{7} \times 1.024 \times 0.976$		2	M1
			$\begin{gathered} 2.49856 \times 10^{7} \text { or } \\ 24985600 \end{gathered}$		A1 Allow answers between 24986000 and 24990000 inclusive oe ISW rounding.
					Total 8 marks

Question		Working	Answer	$\begin{gathered} \text { Mark } \\ \hline 3 \end{gathered}$	Notes
3	(a)	$8 \times(8+C D)=10^{2}$			M1 Allow use of $x, d, 2 r$ etc.. for $C D$ Method to find $D T$ does not gain this mark until either an expression involving $C D$ or r is formed.
		$(C D=) \frac{10^{2}}{8}-8(=4.5)$ oe			M1 dep. Fully correct expression for $C D$ or r
			2.25 (cm) oe		A1
	$\begin{array}{\|l} \text { (a) } \\ \text { ALT } \\ \hline \end{array}$	$10^{2}+r^{2}=(8+r)^{2}$			M1 Correct equation involving r.
		$100=64+16 r$ oe			M1 dep. Correct equation involving only linear terms in r.
			2.25 (cm) oe		A1
	(b)	$\begin{aligned} & \tan \angle A O C=\frac{10}{" 2.25^{\prime \prime}} \text { or } \\ & \sin \angle A O C=\frac{10}{8+" 2.25^{\prime \prime}} \text { or } \\ & \cos \angle A O C=\frac{" 2.25^{\prime \prime}}{8+2.25^{\prime \prime}} \\ & \left(\Rightarrow \angle A O C=77.3^{\circ}\right) \end{aligned}$ Allow $\begin{aligned} & 10^{2}=(8+" 2.25 ")^{2}+" 2.255^{2}- \\ & 2 \times(8+" 2.25 ") \times 2.25 \cos \angle \mathrm{AOC} \end{aligned}$		3	M1 Any correct expression for sin, \cos or \tan of $\angle A O C$ or $\angle A O C$ If candidate gives an expression for $\angle A T O$ this mark is only gained when they use $\angle A T O$ to find $\angle A O C$.
		$\text { arc length }=\frac{" 77.3 "}{360} \times 2 \pi \times \text { "2.25" }$			M1 dep. Do not follow through if $64^{\circ} \leq \angle A O C \leq 68^{\circ}$ or $\angle A O C \geq 90^{\circ}$
			$\begin{gathered} \text { AWRT } 3.03 \text { or } \\ 3.04(\mathrm{~cm}) \\ \hline \end{gathered}$		A1

Question	Working	Answer	Mark	Notes	
$\mathbf{4}$	(a)		Triangle B drawn	1	B1 Do not penalise missing label across (a), (c) and (d).
	(b)		Translation	2	B1 B1 These 2 marks are independent. Do not award either if more than one transformations given (including two translations).
	(c)		$\binom{2}{3}$		

4	(e)	Recognising that $\mathbf{N}=\mathbf{M}^{-1}$			

Question		Working	Answer	$\begin{gathered} \hline \text { Mark } \\ \hline 3 \end{gathered}$	Notes M1 Correct expression for $B E^{2}$
5	(a)	$\left(B E^{2}=\right) 5^{2}+8^{2}-2(5)(8) \cos (30)$			
		$(B E=) \sqrt{5^{2}+8^{2}-40 \sqrt{3}}$			M1 dep. Correct expression for $B E$. Must demonstrate correct order of operations. We must see $40 \sqrt{3}$ or values which round to $69.3,19.7$ or 4.4 to award this mark.
			AWRT 4.44 (cm)		A1
	(b)	$\frac{\sin (\angle A B E)}{5}=\frac{\sin 30}{44.44 "}$		3	M1 Correct equation involving $\angle A B E$ could be labelled x, θ etc...
		$\sin (\angle A B E)=\frac{5 \sin 30}{44.44 "}$			M1 dep. Correct expression for any trig ratio of $\angle A B E$ or correct expression for $\angle A B E$
			AWRT 34.3(${ }^{\circ}$)		A1
	(c)	$\begin{aligned} & \text { Area of } \triangle A B E=\frac{1}{2}(8)(5) \sin 30 \\ & (=10) \text { or } \\ & \text { Area of } \triangle A B E= \\ & \quad \frac{1}{2} \times 8 \times 4.44 " \times \sin " 34.3 " \end{aligned}$		4	M1
		Length scale factor $(k=) \sqrt{\frac{18.9+" 10 "}{" 10 "}}(=1.7)$			M1 dep. This mark is not awarded until a square root is taken if a method involving $C D^{2}$ is used.
		$C D=41.7$ " \times "4.44"			M1 dep. Length scale factor multiplied by their value from (a)
			7.55 (cm)		A1 Allow any answer between 7.54 and 7.55 inclusive.
					Total 10 marks

Question		Working	Answer	$\frac{\text { Mark }}{3}$	Notes
7	(a)	$\frac{3}{5}+\left(\frac{2}{5} \times \frac{2}{5}\right)+\left(\frac{2}{5} \times \frac{3}{5} \times \frac{3}{8}\right)$			M2, M1 for either $\frac{2}{5} \times \frac{2}{5}$ or $\frac{2}{5} \times \frac{3}{5} \times \frac{3}{8}$
			$\frac{17}{20} \text { or } 0.85$		A1 oe.
	$\begin{array}{\|l\|} \hline \text { (a) } \\ \text { ALT } \end{array}$	$1-\frac{2}{5} \times \frac{3}{5} \times \frac{5}{8}$			$\text { M2, M1 for } \frac{2}{5} \times \frac{3}{5} \times \frac{5}{8}$
			$\frac{17}{20} \text { or } 0.85$		A1 oe
	(b)	$\frac{3}{5}+\frac{2}{5} p=\frac{3}{4} \text { or }\left(\frac{3}{4}-\frac{3}{5}\right) \div \frac{2}{5}$		3	M2 or M1 for $\frac{2}{5} p$ (oe) or $\left(\frac{3}{4}-\frac{3}{5}\right)$ seen
			$\frac{3}{8} \text { or } 0.375$		A1 oe
	$\begin{array}{\|l} \hline \text { (b) } \\ \text { ALT } \end{array}$	$\frac{1}{4}=\frac{2}{5} \times q\left(q=\frac{5}{8}\right)$			M1
		$1-4 \frac{5}{8}$			M1 dep. Do not award if their value of q is not in the range $0 \leq q \leq 1$
			$\frac{3}{8} \text { or } 0.375$		A1 oe
	(c)	$\frac{3}{4} \times{ }^{20}{ }^{20}$		2	M1 ft their answer from part (a) only if it is between 0 and 1 inclusive.
			$\frac{51}{80}>\frac{1}{2}$ so yes (Preety should take the tests)		A1 cao must follow from correct part (a) $\frac{51}{80}=0.6375$ allow any rounded value with full working seen.

Question		Working	Answer	$\begin{gathered} \hline \text { Mark } \\ 2 \end{gathered}$	Notes M1 Sum of four terms in x A1
8	(a)	$(P=) 4 x+(5 x+3)+(2 x+3)+5 x$			
			$(P=) 16 x+6$ oe		
	(b)	$A=\frac{1}{2}((2 x+3)+(5 x+3))(4 x)$ oe		2	$\begin{aligned} & \text { M1 Allow } A=(2 x+3) \times 4 x+\frac{1}{2} \times 3 x \times 4 x \text { or } \\ & \frac{1}{2}(7 x+6) \times 4 x \end{aligned}$
			$A=14 x^{2}+12 x$		A1 Must be clearly shown with no incorrect steps. At least one correct intermediate step must be seen.
	(c)	"16x+6" > 52		6	M1 Their perimeter >52, condone \geq. or $=$
		$x>2.875$			A1 ft their answer to part (a) as long as it it a linear expression in x. Allow as a fraction $\frac{23}{8}$ oe allow 2.88 . Condone \geq or $=$
		$14 x^{2}+12 x \leq 162$			M1 Accept < 162 may be inferred by an inequality for x stated inbetween their solutions to their quadratic.
		$(x-3)(7 x+27) \leq 0$			M1 indep. 'equating' to zero and solving (oe) Independent of previous mark, need not be expressed as inequality, condone an equality or any inequality sign. Must be solving quadratic trinomial. By factorising brackets must expand to give 2 out of 3 terms correct or fully correct substitution into fully correct formula.
		$-\frac{27}{7} \leq x \leq 3$			A1 Correct interval accept $x \leq 3$ or $x<3$ if no other inequality stated in relation to this inequality.
			$2.875<x \leq 3$		A1 cao. Must follow from completely correct working. Condone only finding critical values in working as long as the working contains no ambiguous or incorrect inequalities.

Question		Working	Answer	$\begin{gathered} \hline \text { Mark } \\ \hline 5 \end{gathered}$	Notes
9	(a)	$\sqrt{(2 x-1)^{2}+y^{2}}=\sqrt{98}$			M1 Correct use of modulus to form any correct equation
		$(2 x-1)+(y+3)=7$			M1 oe e.g. $2 x+y=5$
		$(2 x-1)^{2}+(5-2 x)^{2}=98$ oe			M1 dep. on both previous M marks. Remove square-roots and substitute to gain an equation in terms of x only. May be seen in expanded form. $\text { Eg. }-4 x^{2}+4 x+97=25+4 x^{2}-20 x$ For this and next M mark allow a maximum of 1 sign or numerical error.
		$8 x^{2}-24 x-72=0$			M1 dep. previous mark. Expand and attempt to form 3 term quadratic For this and previous M mark allow a maximum of 1 sign or numerical error.
			$x^{2}-3 x-9=0$		A1 As answer given sufficient working must be shown. No incorrect work can be seen.
	(b)(i)	$\begin{aligned} & x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-9)}}{2(1)} \\ & \text { or }\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}-9=0 \end{aligned}$		2	M1 Solving quadratic using formula or completing square
			$x=\frac{3+3 \sqrt{5}}{2}$		A1 Accept other equivalent exact forms eg $\frac{3+\sqrt{45}}{2}$ Do not accept \pm for the final answer, they must indicate positive solution. Do not isw answer given as a decimal.

(b)(ii)	$y=5-2\left(\frac{3+3 \sqrt{5}}{2}\right)$		2	M1 Substitute their x which must be an expression involving surds into linear equation to find y If using equation for y^{2} must obtain $y^{2}=98-49-12 \sqrt{5}$ or simpler to gain this mark.
		$y=2-3 \sqrt{5}$		A1 As answer given sufficient working must be shown Allow $y^{2}=49-12 \sqrt{5}$ from modulus equation and expansion of $(2-3 \sqrt{5})^{2}=49-12 \sqrt{5}$ along with an appropriate comment. Do not isw answer given as a decimal.
(c)	$\begin{aligned} & \left\|\|\mathbf{q}\|^{2}=\right) \\ & (2-3 \sqrt{5}+3)^{2}+(-(2-3 \sqrt{5}))^{2} \end{aligned}$		3	M1 Attempt $\|\mathbf{q}\|^{2}=q_{1}{ }^{2}+q_{2}{ }^{2}$ - allow in terms of y or x Eg. $(y+3)^{2}+y^{2}$ or $(8-2 x)^{2}+(5-2 x)^{2}$ Allow an expression for $\|\mathbf{q}\|$
	$=25-30 \sqrt{5}+45+45-12 \sqrt{5}+4$			M1 dep expand brackets must involve surds. Allow square root of this.
		$\begin{gathered} 119-42 \sqrt{5} \text { or } \\ 7(17-6 \sqrt{5}) \end{gathered}$		A1 cao Do not isw answer given as a decimal.
				Total 12 mar

Question		Working	Answer	$\begin{gathered} \text { Mark } \\ \hline 2 \end{gathered}$	Notes M1 Consideration that $h>0$ Alternatively award for 2.5 oe. seen in working.
11	(a)	$15-6 r>0$			
			$r=2.5$		
	(b)	$(V=) \frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$		3	M1
		$\begin{aligned} & (V=) \frac{1}{3} \pi r^{2}(15-6 r)+\frac{2}{3} \pi r^{3} \text { or } \\ & (V=) \frac{1}{3} \pi r^{2}(h+2 r) \end{aligned}$			M1 Substitutes $h=15-6 r$ to obtain an expression in π and r only or fully factorise expression for V. Must have V in the form $(V=) \frac{1}{3} \pi r^{2} h+\frac{n}{3} \pi r^{3}$ to award this method mark.
			$\begin{aligned} & V= \\ & \frac{1}{3} \pi r^{2}(15-4 r) \end{aligned}$		A1 Answer given must see evidence of both factorisation and substitution to award this mark. Penalise lack of $V=$ for this mark only.
	(c)		2.2, 15.4, 23.1	3	B3 Penalise rounding to 1 dp . once only. Treat 15.3 and 23.0 as rounding errors.
	(d)	At least 5 points plotted correctly		2	M1 ft. points from (c) as long as at least B1 gained in (c). Points clearly plotted correct to $1 / 2$ a small square or if not clearly plotted a curve drawn which goes within $1 / 2$ a small square of the correct points. Measure closest point on curve to the correct point not necessarily horizontally or vertically.
			Fully correct curve		A1 ignore anything to the right of $r=2.4$
	(e)		Value must be read from their graph (eg. 1.8)	1	B1 ft. their graph. Answer given to accuracies beyond 2 dp . should not gain this mark. Answer must be consistent with their graph.

	(f)	$(V=) 30-12 r$		3	M1
		Line with negative gradient, y- intercept of 30 and only one intersection point with curve drawn.		M1 indep Line through $(1,18)$ and (2,6) would imply both this and the previous M mark.	
				A1 cao Must come from correct line drawn.	

