Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4MB1_01_2019_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question		Working	Answer	Mark		
1	(a)		8700	1	B1 oe	
	(b)		0.037	1	B1 oe	

lists multiples of 18, 30 and 48 (at least 2 multiples, not inc number itself for all three of the numbers, ie
(18),36,54, ...
(30),60,90, ..
(48), $96,144, \ldots$) or
table method

Total 2 marks

3	(a)		Second row first square	1	B1 Or row four third square
	(b)		Second row third square	1	B1

otal 2 marks

4	$\frac{9}{4} \times \frac{6}{23}$ or $\frac{9}{4} \div \frac{23}{6}$		M1 Or equivalent method for dividing two fractions	
	$\frac{54}{92}=\frac{27}{46}$ or $\frac{9}{2} \times \frac{3}{23}=\frac{27}{46}$ or $\frac{9}{2} \div \frac{23}{3}=\frac{27}{46}$ or $\frac{27}{12} \div \frac{46}{12}=\frac{27}{47}$ oe	$\frac{27}{46}$	2	A1 Dependent on all working seen

Question		Working	Answer	Mark	Notes
5					M1 One term differentiated correctly
			$8 x^{3}+\frac{6}{x^{3}}$	2	A1 oe (e.g. $\left.8 x^{3}+6 x^{-3}\right)$

6		$\frac{5-(-10)}{-3-2}$			M1 Condone one sign error or award if gradient of 3
			-3	2	A1

7		$8 x^{2}+12 x-10 x-15$		M1 Four terms seen with at least three correct (with signs) or two terms correct in a three term expression	
			$8 x^{2}+2 x-15$	2	A1 Correct answer with no working scores both marks. Do not ignore subsequent working.

8		$(24-5(3))+(24-5(10))$		M1 Or both terms correct but not added. Terms are 9 and - 26	
			-17	2	A1

| 9 | | $\frac{360}{9}$ or $9 n=360$ or $180(n-2)=171 n$ oe | | M1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | Total 2 marks | | | |
| 10 | 7.60×0.85 | 40 | | A1 | |

Question		Working	Answer	Mark	Notes
11	(a)		$6 x^{7}$	1	B1
	(b)				M1 for two terms correct as part of a product. Do not ISW
			$64 a^{6} b^{9}$	2	A1

12	(a)		$\mathrm{f}(x) \geqslant-2$	1	B1 or $y \geqslant-2$ or $\mathrm{f} \geqslant-2$ or set notation $[-1, \infty)$ or $\mathrm{f}: x \geqslant-2$ but do not allow $x \geqslant-2$
	(b)	$[\mathrm{fg}(2)=] \mathrm{f}\left(\frac{12}{2}\right)[\mathrm{f}(1)]$ or $\left[\mathrm{fg}(x)=1\left(\frac{12}{x^{2}}\right)^{2}-2\right.$			M1 Evidence of correct first step eg $\frac{12}{2^{3}+4}$ or $\mathrm{g}(2)=1$ or

| $[\mathrm{fg}(2)=] \mathrm{f}\left(\frac{12}{2^{3}+4}\right)[=\mathrm{f}(1)]$ or $[\mathrm{fg}(\boldsymbol{x})=]\left(\frac{12}{\boldsymbol{x}^{3}+4}\right)^{2}-2$ | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | | -1 | 2 | A1 |

$\mathrm{f}(1)$ or $\left(\frac{12}{\boldsymbol{x}^{3}+4}\right)^{2}-2$
A1 Must not come from any incorrect working

13	(a)		192	1	B 1
	$(\mathrm{~b})$	$3\left(c^{2}+2 c\right)$ or $c(3 c+6)$			M 1
			$3 c(c+2)$	2	A 1 allow $(3 c+0)(c+2)$ Do not IS

Question		Working	Answer	Mark	Notes 14

Question		Working	Answer	Mark	Notes
17	(a)	$\frac{1}{2}(2)(6) \sin 30^{\circ} \text { oe }$			M1
			3	2	A1
	(b)	$\begin{aligned} & \cos x^{\circ}=\frac{4}{12} \text { or } \sin x^{\circ}=\frac{[(\sin 90)] \sqrt{12^{2}-4^{2}}}{12} \text { or } \\ & \tan x^{\circ}=\frac{\sqrt{12^{2}-4^{2}}}{4} \text { or } \cos x^{\circ}=\frac{12^{2}+4^{2}-\left(\sqrt{12^{2}-4^{2}}\right)^{2}}{2 \times 12 \times 4} \end{aligned}$			M1 Complete method (e.g. Pythagoras followed by sine, cosine rule, etc.) Allow $8 \sqrt{2}$ or awrt 11.3 for $\sqrt{12^{2}-4^{2}}$
			70.5	2	A1 awrt 70.5
					Total 4 marks

	Working	Answer	Mark	Notes
18				M1 One of $\frac{3}{9} \times \frac{2}{11}$ or $\frac{2}{9} \times \frac{4}{11}$ or $\mathrm{P}(R$, not $R)$ ie $\frac{3}{9} \times \frac{9}{11}$ accept $\left(\frac{3}{9} \times \frac{4}{11}+\frac{3}{9} \times \frac{5}{11}\right)$ or $\mathrm{P}(Y$, not $Y)$ ie $\frac{2}{9} \times \frac{7}{11}$ accept $\left(\frac{2}{9} \times \frac{2}{11}+\frac{2}{9} \times \frac{5}{11}\right)$ or $\mathrm{P}(G, \operatorname{not} G)$ ie $\frac{4}{9} \times 1$ accept $\left(\frac{4}{9} \times \frac{2}{11}+\frac{4}{9} \times \frac{4}{11}+\frac{4}{9} \times \frac{5}{11}\right)$
	$\left(\frac{3}{9} \times \frac{2}{11}\right)+\left(\frac{2}{9} \times \frac{4}{11}\right)$			M1 Or two of $\frac{3}{9} \times \frac{9}{11}$ accept $\left(\frac{3}{9} \times \frac{4}{11}+\frac{3}{9} \times \frac{5}{11}\right)$ or $\frac{2}{9} \times \frac{7}{11}$ accept $\left(\frac{2}{9} \times \frac{2}{11}+\frac{2}{9} \times \frac{5}{11}\right)$ or $\frac{4}{9} \times 1 \quad$ accept $\left(\frac{4}{9} \times \frac{2}{11}+\frac{4}{9} \times \frac{4}{11}+\frac{4}{9} \times \frac{5}{11}\right)$
	$1-\left(\left(\frac{3}{9} \times \frac{2}{11}\right)+\left(\frac{2}{9} \times \frac{4}{11}\right)\right)$			M1dep on both previous method marks being awarded. Attempt at correct calculation (oe)
		$\frac{85}{99}$	4	A1 oe awrt 0.86 awrt 85\%
Total 4 marks				
19	UB of 1.32 is 1.325			B1 1.325 seen implied by correct answer
	LB of 9.8 is 9.75			B1 9.75 seen implied by correct answer
	$6.28 \sqrt{\frac{1.325}{9.75}}$			M1 Subst in their $L>1.32$ and $g<9.8$
		2.32	4	A1 awrt 2.32
Total 4 marks				
20	$\mathrm{fd}=1.6,0.5,1.4,0.6,0.2$			M1 for use of area to work out freq density. Implied by the

Question	Working	Answer	Mark	Notes	
					frequency of 30-45 being 9 or a bar drawn at the correct height
			He, 9 Haghts at 0.5 and 0.2	A3 for all four correct, A2 for three and A1 for two The heights must be drawn on the histogram and be for 10 -2010 small squares high, for 45-60 4 small square high	

Total 4 marks

| 21 | $x(3 w-2 y)-15(3 w-2 y)=3(x+2 y)$ or
 $(3 w-2 y)(x-15)=3(x+2 y)$ | | M1 Multiply through by ($3 w-2 y)$ and 3-not necessarily
 at the same time | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3 x+2 x y-3 x w=24 y-45 w$ | $x(3+2 y-3 w)=24 y-45 w$ | $x=\frac{24 y-45 w}{3+2 y-3 w}$ | 4 | M1 Collect x terms on one side and other terms on the
 opposite side (indep of first M) |
| | A1 Final answer - or equivalent - but must a single
 fraction. The numerator and denominator need not be
 simplified. Do not ISW | | | |
| | | | | |

Total 4 marks				
22	$B F=\sqrt{0.5^{2}+1.2^{2}} \quad[\Rightarrow B F=1.3]$			M1 Award for $\sqrt{0.5^{2}+1.2^{2}}$ or 1.3 or correct method using trig to find an angle and then to find FB
	[Area of triangle $A B F($ or $C D E)]=0.5 \times 0.5 \times 1.2[=0.3]$ or [area of $A B F+D C E=] 2 \times 0.5 \times 0.5 \times 1.2[=0.6]$			M1 Allow use of $\frac{1}{2} a b \sin c$ with a correct method used to find the angle
	[Area of rectangle $A D E F]=0.5 \times 2.3[=1.15]$ and [Area of rectangle $A B C D]=1.2 \times 2.3[=2.76]$			M1
	[Area of rectangle $B C E F]=2.3 \times 11.3$ " [=2.99]			M1 dep on $1^{\text {st }}$ M1 being awarded - allow their 1.3
		7.5	5	A1 cao
Total 5 marks				

Question			Answer	Mark		
23	(a)					

Question		Working	Answer	Mark	Notes
24	(a)	$\overrightarrow{Y X}=\overrightarrow{Y O}+\overrightarrow{O X}$ or $\overrightarrow{Y X}=\overrightarrow{O X}-\overrightarrow{O Y}$ or $3 \mathbf{a}-5 \mathbf{b}+2 \mathbf{a}+3 \mathbf{b}$			M1do not accept $\overrightarrow{X Y}$
			$5 \mathrm{a}-2 \mathrm{~b}$	2	A1 oe
	(b)	$\begin{aligned} & {[\overrightarrow{Y Z}=\overrightarrow{O Z}-\overrightarrow{O Y}=]\left(-\frac{2}{9} \mathbf{a}+\frac{35}{9} \mathbf{b}\right)-(-3 \mathbf{a}+5 \mathbf{b})} \\ & {[\overrightarrow{Z X}=\overrightarrow{Z O}+\overrightarrow{O X}=]-\left(-\frac{2}{9} \mathbf{a}+\frac{35}{9} \mathbf{b}\right)+2 \mathbf{a}+\mathbf{3 b}} \\ & {[\overrightarrow{Z X}=\overrightarrow{Y X}-\overrightarrow{Y Z}=](" 5 \mathbf{a}-2 \mathbf{b} ")-\left(\frac{25}{9} \mathbf{a}-\frac{10}{9} \mathbf{b}\right)} \\ & (" 5 \mathbf{a}-2 \mathbf{b} ")=k\left(" \frac{20}{9} \mathbf{a}-\frac{8}{9} \mathbf{b}^{\prime \prime}\right) \\ & j(" 5 \mathbf{a}-2 \mathbf{b} ")=\left(" \frac{20}{9} \mathbf{a}-\frac{8}{9} \mathbf{b}^{\prime}\right) \end{aligned}$			M1 any 1 correct method. ft their $\overrightarrow{Y X}$ from part a. and their KZ in the $4 / 5^{\text {th }}$ line. May be implied by one of $\begin{aligned} & \overrightarrow{Y Z}=\frac{25}{9} \mathbf{a}-\frac{10}{9} \mathbf{b} \\ & \overrightarrow{Z X}=\frac{20}{9} \mathbf{a}-\frac{8}{9} \mathbf{b} \\ & k=\frac{4}{9} \\ & j=\frac{9}{4} \end{aligned}$
		$\begin{aligned} & \overrightarrow{Y Z}=\frac{25}{9} \mathbf{a}-\frac{10}{9} \mathbf{b} \text { and } \overrightarrow{Z X}=\frac{20}{9} \mathbf{a}-\frac{8}{9} \mathbf{b} \\ & \text { or } k=\frac{4}{9} \text { or } j=\frac{9}{4} \end{aligned}$			A1 accept decimals for fractions if meaning clear
			5:4	3	A1 Allow $\frac{5}{4}: 1$ or $1: \frac{4}{5}$ or $1.25: 1$ or $1: 0.8$ do not allow $\frac{4}{5} \overrightarrow{Y X}=\overrightarrow{Z X}$ oe

Question		Working	Answer	Mark	Notes
25	(a)		54		B1
		eg The sum of the opposite angles in a cyclic quadrilateral is 180°	Reason	2	B1 need bold - other reasons may be given - must be associated with method used (see below for bold words)
	(b)	$\angle B O D=108^{\circ}$			M1
		$360-(108+126+62)$			M1ft their 108 but must be clear it is $B O D$
			64		A1
		Angle at centre of a circle is twice angle at the circumference or angles in a quadrilateral add up to $\mathbf{3 6 0}$ or angles at a point add up to $\mathbf{3 6 0}{ }^{\circ}$	Reason	4	B1 need one reason only and bold words - must be associated with method used
		Alternative method marks 1 $\angle B C O=62^{\circ}$			M1
		$\angle O C D=126-62$			M1ft their 62 but must be clear it is $B C O$
			64		A1
		Base(oe) angles of an isosceles triangle are the same			B1 need bold words - must be associated with method used
		Alternative method marks 2 Let $\angle O D A=y \quad \therefore \angle A B O=" 54 "+y$			M1ft Using their part (a)
		$\angle C D A=360-126-62-$ " 54 "-("54"+y)			M1
			64		A1
		Isosceles triangle, angles in a triangle add up to $\mathbf{1 8 0}^{\circ}$ and angles in a quadrilateral add up to $\mathbf{3 6 0}$	Reason		B1 need one reason only and bold words - must be associated with method used
					Total 6 marks

Question		Working	Answer	Mark	
26		$\mathbf{A}^{2}=\left(\begin{array}{cc}-11 & 9 \\ -15 & -14\end{array}\right)$			M1Condone one error
		$\mathbf{A B}=\left(\begin{array}{cc}11 & 2 k-3 \\ -19 & -5 k-1\end{array}\right)$		M1 Condone one error	
	$\mathbf{A}^{2}-\mathbf{A B}=\left(\begin{array}{cc}-22 & 12-2 k \\ 4 & 5 k-13\end{array}\right)$		A1 cao		
	$\operatorname{det}\left(\mathbf{A}^{2}-\mathbf{A B}\right)=-22(5 k-13)-4(12-2 k)$		M1 ft their $\mathbf{A}^{2}-\mathbf{A B}$		
	$-22(5 k-13)-4(12-2 k)=3 k+28 \Rightarrow k=\ldots$	M1dep on previous M1- Sets their determinant equal to $3 k+28$ and attempts to solve for k			
			$6=2$	6	A1

27	Area of large semicircle $=\frac{1}{2} \pi x^{2}$ or half large semicircle $=\frac{1}{4} \pi x^{2}$			M1
	Area of small circle $=\pi\left(\frac{x}{2}\right)^{2} \quad$ or half small circle $=\frac{1}{2} \pi\left(\frac{x}{2}\right)^{2}$			M1
	Shaded region $=\frac{1}{2}\left(\frac{1}{2} \pi x^{2}-\pi\left(\frac{x}{2}\right)^{2}\right)\left[=\frac{1}{8} \pi x^{2}\right]$			A1
	Perimeter $=x+\frac{1}{4}(2 \pi x)+\frac{1}{2}\left(2 \pi\left(\frac{x}{2}\right)\right)[=\pi x+x]$			M1 dep on first two methods.
	" $\frac{\pi x^{2}}{8} "=" \pi x+x "$			M1 Equates their expressions for the perimeter and area of shaded region
		$x=\frac{8(\pi+1)}{\pi}$	6	A1 Or equivalent

Question		Working	Answer	Mark	Notes
28	(a)	$[v=]-9 t^{2}+12 t+k$			M1 A three term expression is needed with 1 correct term or a 4 term expression with 2 terms correct
		$-9(2)^{2}+12(2)+k=9$	$k=21$	3	A1 stating $k=21$ following a fully correct solution with no errors. Note that answer given in question
28	(b)	$-9 t^{2}+12 t+21=0$			M1

