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International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = 47/°
Curved surface area of cone = 77 x slant height

Volume of sphere = %ms

Series

Arithmetic series
Sum to n terms, S, = g[Za +(n - l)d]
Geometric series

a(l—7r")
(1-r)

Sum to n terms, S, =

Sum to infinity, S_ = " a |r| <1
-r

Binomial series

n(n '— l)x2 4 nn—-1)...(n - r+1)x,

I+x)"=14+nx+
r!

+... for [x|<LneQ

Calculus

Quotient rule (differentiation)

d (f(x)) _ P'()ex) — fx)g'(x)
dx{ g(x) [g(0)]

Trigonometry

Cosine rule
In triangle ABC: a* = b* + ¢* — 2bccos A4

sinf

tanf =
cos®

sin(4 + B) = sin A cos B + cos A4 sin B sin(A — B) =sin 4 cos B —cos 4 sin B
cos(4 + B) =cos A cos B—sin 4 sin B cos(A — B) =cos A cos B +sin 4 sin B

tan(4 + B) = tan 4 + tan B tan(4 — B) = tan4 — tan B
1—tan Atan B 1 + tan Atan B
Logarithms
log, x
log, x = ——
log, a
2
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Answer all ELEVEN questions.
Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The position vector of the point 4 is (3i — 2j), referred to a fixed origin O.
The point B is such that AB = (6i + 8j)

(a) Find the position vector of B as a simplified expression in terms of i and j

2

(b) Find the magnitude of vector AB
(1)

(c) Find a unit vector, in terms of i and j, that is parallel to AB
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Question 1 continued

(Total for Question 1 is 5 marks)
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2 When poured from a pipe, concrete is formed into the shape of a cuboid with a square
base of side x and with a height of 3x

The volume of the cuboid increases at a constant rate of 8 m*/s

Find the rate of increase, in m/s, of x when x = 2 metres.
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Question 2 continued

(Total for Question 2 is 6 marks)
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3 A geometric series has first term a and common ratio », where » > 0

Given that the 3rd term of the series is 5 and that the 5th term of the series is %
(a) find
(i) the exact value of »

(i1) the value of a

C))

(b) Find the sum to infinity of this series.
Give your answer in the form p + qﬁ where p and ¢ are integers.
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(Total for Question 3 is 6 marks)

J

9

ormm R A A0 Turn over
P 71 6 4 2 A 0 9 3 6 urhove

>



4 fx)=x"+px*+gx+7 where p and ¢ are integers.

(x + 1) is a factor of f(x)
The remainder when f(x) is divided by (x + 2) is -5

(a) Find the value of p and the value of ¢

(b) Hence, show that f(x) = 0 has only one real root.
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Question 4 continued

(Total for Question 4 is 8 marks)
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5 (a) Complete the table of values for y = ™ giving your answers to 2 decimal places.

X 0 0.25 0.5 0.75 1
vy 014 2.72
(2)
(b) On the grid opposite, draw the graph of y=¢> > for 0 <x < 1
(2)

(c) By drawing a suitable straight line on the grid, obtain an estimate, to one decimal
place, of the root of the equation 3x =2 + In(3 —x)
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Question 5 continued
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Turn over for a spare grid if you need to redraw your graph.
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Question 5 continued

Only use this grid if you need to redraw your graph.

(Total for Question 5 is 7 marks)
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Diagram NOT
accurately drawn

Figure 1

Figure 1 shows a right pyramid VABCD with vertex V" and square base ABCD.
Each of the edges of the pyramid has the same length.

Find the size, in degrees to one decimal place, of the angle between the plane CVD and
the base ABCD.
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Question 6 continued

(Total for Question 6 is 6 marks)
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7 (a) Solve the equation

3
cos(3x—15)°=§ for 0 <x <180
4)

(b) Solve, giving your solutions to one decimal place where appropriate,

3tan)° +4siny°=0 for —180 <y < 180
4)

(c) Solve, giving your solutions to one decimal place where appropriate,

cosf°=3sin’#° -1 for —180< O <180
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Question 7 continued

(Total for Question 7 is 12 marks)
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Figure 2

Figure 2 shows part of the curve C with equation y = e* — 1 and part of the curve D
with equation y =9 — 9¢ ™

The curves intersect at the origin O and the point 4.

(a) (i) Show that the x coordinate of the point 4 satisfies the equation

(€)Y —10e"+9=0

1
(i) Hence, show that the x coordinate of the point 4 is 3 In9

The finite region bounded by C and by D is shown shaded in Figure 2.

(b) Use calculus to find the exact area of this region.
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Question 8 continued
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Question 8 continued
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Question 8 continued

(Total for Question 8 is 11 marks)
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9 (a) Write ﬁ in the form a(1 — bx)"

where a and b are fractions in their lowest terms.

2

3
—(3 S in ascending powers of x up to and including the term in x°

Express each coefficient as a fraction in its lowest terms.

(b) Expand

3)
(c) (1) Use a suitable value of x with your expansion in part (b), to obtain an

24
approximation for 5 to 5 decimal places.

(i) Find the percentage error, to 2 decimal places, of your approximation from the
actual value.
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Question 9 continued
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Question 9 continued
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Question 9 continued

(Total for Question 9 is 9 marks)
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A curve C has equation

_Ix =2 3
2x -3

y

(a) Write down an equation of the asymptote to C that is
(1) parallel to the y-axis,

(i1) parallel to the x-axis.

(b) Find the coordinates of the points of intersection of C with the coordinate axes.

(c) Using calculus, show that at every point on the curve, the gradient of C is negative.

(d) Using the axes on the opposite page, sketch C.
Show clearly and label with their equation any asymptotes and the coordinates of
the points of intersection of C with the coordinate axes.

The straight line / is the normal to C at the point A.
The x coordinate of A4 is positive and the gradient of / is 17
The line / also intersects C at the point B.

(e) Find the exact coordinates of B.
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Question 10 continued
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Question 10 continued

(Total for Question 10 is 18 marks)
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/\ Diagram NOT
accurately drawn

hcm

Figure 3

Figure 3 shows a solid metal right circular cylinder of radius »cm and height #cm.
The total surface area of the cylinder is 600 cm’
The volume of the cylinder is Vem’

(a) Show that V =300r — mr’

Given that » can vary,

(b) (1) use calculus to show that the exact value of » for which V' is a maximum is

100
r=,|—
T

(i1) justify that this value of  gives a maximum value of V'

The cylinder is melted down and reformed into a sphere of radius pcm.

(c) Find, to one decimal place, the greatest possible value of p
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Question 11 continued
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Question 11 continued

(Total for Question 11 is 12 marks)

TOTAL FOR PAPER IS 100 MARKS
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