Please check the examination details bel	ow before entering your candidate information
Candidate surname	Other names
Centre Number Candidate N	umber
Pearson Edexcel Inter	national GCSE
Time 2 hours	Paper reference 4PM1/02R
Further Pure Mat	hematics
PAPER 2R	
[
Calculators may be used.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle *ABC*: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

There are no questions on this page.

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	The position v	vector of the 1	point A is	$(3\mathbf{i} - 2\mathbf{j}),$	referred to	o a fixed	origin O.
			→				

The point B is such that $\overrightarrow{AB} = (6\mathbf{i} + 8\mathbf{j})$

(a) Find the position vector of B as a simplified expression in terms of \mathbf{i} and \mathbf{j}

(2)

(b) Find the magnitude of vector \overrightarrow{AB}

(1)

(c) Find a unit vector, in terms of **i** and **j**, that is parallel to \overrightarrow{AB}

(2)

.....

2	When poured from a pipe, concrete is formed into the shape of a cuboid with a square base of side x and with a height of $3x$					
	The volume of the cuboid increases at a constant rate of 8 m ³ /s					
	Find the rate of increase, in m/s, of x when $x = 2$ metres.	Find the rate of increase, in m/s, of x when $x = 2$ metres.				
		(6)				

3	A geometric series has first term a and common ratio r , where $r > 0$	
	Given that the 3rd term of the series is 5 and that the 5th term of the series is $\frac{5}{2}$	
	(a) find	
	(i) the exact value of r	
	(ii) the value of a	(4)
	(b) Find the sum to infinity of this series. Give your answer in the form $p + q\sqrt{2}$ where p and q are integers.	(4)
		(2)

4	$f(x) = x^3 + px^2 + qx + 7$ where p and q are integers.	
	(x + 1) is a factor of $f(x)The remainder when f(x) is divided by (x + 2) is -5$	
	(a) Find the value of p and the value of q	
		(5)
	(b) Hence, show that $f(x) = 0$ has only one real root.	(3)

5 (a) Complete the table of values for $y = e^{3x-2}$ giving your answers to 2 decimal places.

x	0	0.25	0.5	0.75	1
У	0.14				2.72

(2)

(b) On the grid opposite, draw the graph of $y = e^{3x-2}$ for $0 \le x \le 1$

(2)

(c) By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, of the root of the equation $3x = 2 + \ln(3 - x)$

(3)

Question 5 continued

Turn over for a spare grid if you need to redraw your graph.

XX.	DC.
	W
$\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$	K
Ö	×
\times	KX.
$\times\!\!\times\!\!\times$	×
XX.5	ĸ
	K
0000	K
XX.	X
\times	Ø
$\times\!\!\times\!\!\times$	X
WRITE	Ķ
Ž	×
	!
N THIS AREA	X
$\times\!\!\times\!\!\times\!\!\times$	×
\times	X
XXXX	X
004 K	$^{\wedge}$
	X
	X
\times	\otimes
\times	X
XX.X	X
60000	ĸ
555,00	KX
	X
\times	
	××
+	\times
	X
$\times\!\!\times\!\!\times$	X
$\times\!\!\times\!\!\times$	X
XXXX	X
	××
$+\infty$	\times
\times	X
$\times\!\!\times\!\!\times$	×
$\times\!\!\times\!\!\times$	
***	X
	×
$\times\!\!\times\!\!\times$	\times
$\times\!\!\times\!\!\times$	×
$\times\!\!\times\!\!\times$	X
$\times\!\!\times\!\!\times$	×
$\times\!\!\times\!\!\times$	X
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X
\Diamond	×
$\times\!\!\times\!\!\times$	×
0	X
\times	×
\times	X
888	X
NO	ĸ
	X
	\times
\times	KX.
\times	Ø
$\times\!\times\!\times$	ķĶ
	K)
	K
	×
TWRIT	KX.
\times	įΧ
~~X	r\ X
	ĸ
$\times\!\!\times\!\!\times$	×
	\otimes
11	
2	
11	
Z	
SIN THIS	
E IN THIS ARE	
E IN THIS ARE	
E IN THIS ARE	
SIN THIS	
E IN THIS ARE	
E IN THIS AREA	
E IN THIS AREA DO	
E IN THIS AREA DO NO	
E IN THIS AREA DO NOT	
E IN THIS AREA DO NOT	
E IN THIS AREA DO NOT	
E IN THIS AREA DO NOT	
E IN THIS AREA DO NOT	
E IN THIS AREA DO NOT	
EIN THIS AREA DO NOT WRI	
EIN THIS AREA DO NOT WRIT	
EIN THIS AREA DO NOT WRIT	
EIN THIS AREA DO NOT WRIT	
EIN THIS AREA DO NOT WRIT	
EIN THIS AREA DO NOT WRIT	
EIN THIS AREA DO NOT WRITE IN	
EIN THIS AREA DO NOT WRITE IN	
EIN THIS AREA DO NOT WRITE IN T	
EIN THIS AREA DO NOT WRITE IN T	
EIN THIS AREA DO NOT WRITE IN TH	
EIN THIS AREA DO NOT WRITE IN TH	
EIN THIS AREA DO NOT WRITE IN TH	
EIN THIS AREA DO NOT WRITE IN THIS	
EINITHIS AREA DO NOT WRITE IN THIS A	
EINITHIS AREA DO NOT WRITE IN THIS A	
EINITHIS AREA DO NOT WRITE IN THIS A	
EINITHIS AREA DO NOT WRITE IN THIS A	
EINITHIS AREA DO NOT WRITE IN THIS ARE	
EINITHIS AREA DO NOT WRITE IN THIS A	

DO

Question 5 continued

Question 5 continued

Only use this grid if you need to redraw your graph.

(Total for Question 5 is 7 marks)

C

Diagram **NOT** accurately drawn

(6)

Figure 1

Figure 1 shows a right pyramid *VABCD* with vertex *V* and square base *ABCD*.

Each of the edges of the pyramid has the same length.

Find the size, in degrees to one decimal place, of the angle between the plane CVD and the base ABCD.

7 (a) Solve the equation

$$\cos(3x - 15)^\circ = \frac{\sqrt{3}}{2}$$
 for $0 \le x < 180$

(4)

(b) Solve, giving your solutions to one decimal place where appropriate,

$$3 \tan y^{\circ} + 4 \sin y^{\circ} = 0$$
 for $-180 \le y < 180$

(4)

(c) Solve, giving your solutions to one decimal place where appropriate,

$$\cos \theta^{\circ} = 3 \sin^2 \theta^{\circ} - 1$$
 for $-180 \leqslant \theta < 180$

(4)

\times	\otimes	\otimes
\otimes		\bowtie
\times		\times
88	Ø	\times
\otimes	×	X
88	£	\otimes
\otimes	3	X
\times	X	\bowtie
$\otimes \otimes$	\otimes	W
\otimes		
88		\approx
X	يالا	K
88		
$\Diamond\Diamond$		KX
X		\bowtie
88		\times
		X
88	4	\otimes
$\Diamond \Diamond$		X
×	\times	ļ×.
燹		
\times	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	\otimes
83	M	\otimes
\otimes	\leq	
\times	P	
	90	KX
83		iX
88	W	
∞	Þ	KS.
$\times\!\!\times$	\times	\approx
$\Diamond\Diamond$	$\langle \cdot \rangle$	\otimes
$\times\!\!\times$		\times
$\Diamond \Diamond$		\otimes
\otimes		\otimes
88	\otimes	\approx
$\stackrel{\wedge}{\otimes}$	X	88
		\times
$\langle \! \rangle \! \rangle$		\ll
\otimes	\otimes	\otimes
$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\langle \! \rangle$	\otimes
\otimes	\otimes	\otimes
88	$\langle \! \rangle$	\Rightarrow
奺	S	\times
88	\otimes	\Rightarrow
$\Diamond\Diamond$		55
$\stackrel{\otimes}{\otimes}$		
⋘	X	K
$\times\!\!\times$	\succeq	\otimes
$\overset{\times}{\otimes}$		\otimes
∞	\otimes	88
88	1	\otimes
	8	X
$\stackrel{\times}{\otimes}$	۳	
$\stackrel{\otimes}{\otimes}$	\approx	\bowtie
\otimes	\propto	\otimes
\times	4	\otimes
\otimes	(X	
		X
	×	\otimes
\otimes	4	
$\overset{\otimes}{\otimes}$		\otimes
	4	\otimes
		\otimes

Question 7 continued	

Figure 2

Figure 2 shows part of the curve C with equation $y = e^{3x} - 1$ and part of the curve D with equation $y = 9 - 9e^{-3x}$

The curves intersect at the origin O and the point A.

(a) (i) Show that the x coordinate of the point A satisfies the equation

$$(e^{3x})^2 - 10e^{3x} + 9 = 0$$

(ii) Hence, show that the x coordinate of the point A is $\frac{1}{3} \ln 9$

(5)

The finite region bounded by C and by D is shown shaded in Figure 2.

(b) Use calculus to find the exact area of this region.

(6)

88		
	-	$\otimes \otimes$
S	U	$\stackrel{\Diamond}{\otimes}$
		XX
XX	×	\otimes
X		\otimes
\otimes	-	$\otimes \otimes$
$\langle \langle \rangle$	0	$\otimes \otimes$
X	207	\otimes
\otimes	XX.	\bowtie
XX		
×	8	XX
	75	X
Ö.		
X	\cong	\bowtie
\otimes		XX
\otimes		\bowtie
\propto	$\times\!\!\!\times\!\!\!\!\times$	
×	Ž	\otimes
\approx		\bowtie
Ö.	\cong	$\Diamond\Diamond$
S	Ж	KX.
×	1	XX
88		\bowtie
S	S	$\otimes \otimes$
×	**	\bowtie
\approx		$\times\!\!\times$
~~	-20	\otimes
S	N	X
\approx	m	XX
Ö.	20	
	Þ	$\otimes \otimes$
×	\times	$\times\!\!\times$
\otimes	XX	$\times\!\!\times$
$\langle \times \rangle$	$\times\!\!\times\!\!$	$\times\!\!\times$
X	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\otimes
\otimes	$\times\!\!\times\!\!$	\otimes
$\langle \times \rangle$	$\times\!\!\times\!\!\times$	\times
X	\otimes	X
×	\otimes	$\times\!\!\times\!\!\times$
$\langle \rangle$	XX	$\Diamond \Diamond$
X	$\times\!\!\!\times$	
×	$\langle \! \rangle \! \rangle$	\otimes
\otimes	$\times\!\!\times$	\ll
$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\times\!\!\times\!\!\times$	$\times\!\!\times$
X	$\langle \times \rangle$	\otimes
×		\otimes
\otimes	XX	\bowtie
X	$\times\!\!\times$	\times
×	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	×
\otimes	$\times\!\!\times\!\!$	
$\langle \langle \langle \rangle \rangle$		\otimes
X		\otimes
\times	0	\bowtie
\otimes		\times
×	مم	\sim
S		KΩ
×		XX
	¥,	\times
\otimes	\approx	$\Diamond \Diamond$
X	$\times\!\!\times\!\!\!\times$	
\times		\otimes
8	XX	\otimes
S.	T	$\Diamond \Diamond$
×	ستست	\otimes
\approx	\approx	$\otimes \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
\otimes	**	\otimes
S	Ĥ	8
$\times \rangle$	XX	
		\sim
\otimes		\otimes
\otimes		\otimes
\otimes		
$\stackrel{\times}{\otimes}$		
$\stackrel{\times}{\otimes}$		
\otimes		
$\stackrel{\times}{\otimes}$		
*		
$\stackrel{\times}{\otimes}$		
*		
*	VIEW AR	
*	VIELS ARE	
*	VIELS ARE	
*	VIEW AR	
*	VIELS ARE	
	VIELS ARE	
*	VIELS ARE	
	VIELS ARE	
	VIELS ARE	
	ATHIS AREA	
	A THIS AREA	
	ATEIS AREA DO	
	ATEIS AREA	
	ATHIS AREA	
	ATEIS AREA DO NO	
	NTES AREA DO NOT	
	NTES AREA DO NOT	
	NTES AREA DO NOT	
	ATEIS AREA DO NOT W	
	ATEIS AREA DO NOT W	
	ATEIS AREA	
	ATHIS AREA DO NOT WRIT	
	ATHIS AREA DO NOT WRIT	
	ATHIS AREA DO NOT WRITE	
	NTHIS AREA DO NOT WRITE!	
	NITHIS AREA DO NOT WRITE IN	
	NTHIS AREA	
	NITHIS AREA	
	NTHIS AREA	
	NITHIS AREA	
	NITHIS AREA DO NOT WRITE IN THIS	
	NITHIS AREA	
	NITHIS AREA	
	NITHIS AREA	
	NATHIS AREA	
	NITHIS AREA	

9 (a) Write $\frac{3}{(3-x)^3}$ in the form $a(1-bx)^{-3}$

where a and b are fractions in their lowest terms.

(2)

(b) Expand $\frac{3}{(3-x)^3}$ in ascending powers of x up to and including the term in x^3 Express each coefficient as a fraction in its lowest terms.

(3)

- (c) (i) Use a suitable value of x with your expansion in part (b), to obtain an approximation for $\frac{24}{125}$ to 5 decimal places.
 - (ii) Find the percentage error, to 2 decimal places, of your approximation from the actual value.

(4)

X		$\otimes \otimes$
X		
X	0	$\Diamond \Diamond$
X		XX
×		
\otimes	0	XX
$\langle \! \rangle$		
\otimes	\approx	\bowtie
$\langle \! \rangle$	ŝ	\otimes
×		XX
×	20	X
\otimes	-	X
\otimes	\approx	$\otimes \otimes$
\otimes		\bowtie
\otimes	\sim	$\times\!\!\times$
X		
X		X
X	\approx	XX
×	<u>∞</u> .	X
×		
\otimes		
X	S	$\otimes \otimes$
\otimes		$\times\!\!\times$
$\langle \! \rangle$		\otimes
×		X
X	鎆	KX
\otimes	D	\bowtie
X		\sim
\otimes	$\!$	$\times\!\!\times$
$\langle \! \rangle$	$\times\!\!\times$	\ll
\otimes	$\!$	\otimes
$\langle \! \rangle$	$\times\!\!\times$	\sim
×	$\langle \rangle \langle$	×
Ø		\sim
\otimes		88
X		\times
\otimes		\otimes
\otimes		$\times\!\!\times$
\otimes		$\times\!\!\times\!\!\times$
Ø		$\times\!\!\times$
8		**
×		\otimes
\otimes	$\times\!\!\times$	$\times\!\!\times$
\otimes	$\times\!\!\!\times\!\!\!\!\times$	8
\otimes	Ö	\bowtie
\otimes	O	\otimes
\otimes	\times	$\sim \sim$
\otimes	Z	\otimes
\otimes		\otimes
XX		\sim
\otimes		$\times \times$
\otimes		\bowtie
\otimes	Ĥ	$\times \times$
X		\bowtie
\otimes		X
X	ŵ	$\Diamond \Diamond$
8	\times	XX
8		\otimes
\otimes		
*		
	NEWSAR	
	NEWSAR	
	IN THIS AREA	
	IN THIS AREA DO NOT W	
	IN THIS AREA DO NOT WE	
	IN THIS AREA DO NOT WRI	
	IN THIS AREA	
	IN THIS AREA	
	INTELS AREA DO NOT WRITE!	
	INTELS AREA DO NOT WRITE IN	
	IN THIS AREA	
	INTES AREA DO NOT WRITE IN T	
	INTHIS AREA DO NOT WRITE IN TH	
	IN THIS AREA DO NOT WRITE IN THE	
	IN THIS AREA DO NOT WRITE IN THIS	
	IN THIS AREA DO NOT WRITE IN THIS A	
	IN THIS AREA DO NOT WRITE IN THIS A	
	IN THIS AREA DO NOT WRITE IN THIS AR	
	IN THIS AREA DO NOT WRITE IN THIS AR	
	IN THIS AREA DO NOT WRITE IN THIS A	

Question 9 continued	

10 A curve *C* has equation

$$y = \frac{7x - 2}{2x - 3} \qquad \qquad x \neq \frac{3}{2}$$

- (a) Write down an equation of the asymptote to C that is
 - (i) parallel to the y-axis,
 - (ii) parallel to the *x*-axis.

(2)

(b) Find the coordinates of the points of intersection of C with the coordinate axes.

(2)

(c) Using calculus, show that at every point on the curve, the gradient of C is negative.

(4)

(d) Using the axes on the opposite page, sketch *C*. Show clearly and label with their equation any asymptotes and the coordinates of the points of intersection of *C* with the coordinate axes.

(3)

The straight line l is the normal to C at the point A. The x coordinate of A is positive and the gradient of l is 17 The line l also intersects C at the point B.

(e) Find the exact coordinates of B.

(7)

.....

Question 10 continued
y lack
O X

\times
DO N

\times

Ö
\times
$\times\times\times\times\times\times$
S
VRIT

\times
IN THIS AREA
×
\times
×
×==×

× - 11 × ×
3
$\times\!\!\times\!\!\times\!\!\times$

\times

$\times\!\!\times\!\!\times\!\!\times\!\!\times$

\times
\times
DO

×2×
∞
$\times\!\!\times\!\!\times\!\!\times$

\times
m
2
VRITE IN
EINT
HT NH H
E IN THE
E S
E IN THIS AREA
E S
THIS AREA
THIS AREA
THIS AREA D
THIS AREA DO
THIS AREA DOI
THIS AREA DO N
THIS AREA DO N
THIS AREA DO NO
THIS AREA DO NOT
THIS AREA DO NOT
THIS AREA DO NOT W
THIS AREA DO NOT WR
THIS AREA DO NOT WR
THIS AREA DO NOT WRIT
THIS AREA DO NOT WRIT
THIS AREA DO NOT WRITE
THIS AREA DO NOT WRITE II
THIS AREA DO NOT WRITE II
THIS AREA DO NOT WRITE IN
THIS AREA DO NOT WRITE IN T
THIS AREA DO NOT WRITE IN TH
THIS AREA DO NOT WRITE IN THI
THIS AREA DO NOT WRITE IN TH
THIS AREA DO NOT WRITE IN THIS
THIS AREA DO NOT WRITE IN THIS A
THIS AREA DO NOT WRITE IN THIS AR
THIS AREA DO NOT WRITE IN THIS ARE
THIS AREA DO NOT WRITE IN THIS A

Question 10 continued

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows a solid metal right circular cylinder of radius r cm and height h cm.

The total surface area of the cylinder is $600 \, \text{cm}^2$

The volume of the cylinder is $V \text{cm}^3$

(a) Show that $V = 300r - \pi r^3$

(4)

Given that r can vary,

(b) (i) use calculus to show that the exact value of r for which V is a maximum is

$$r = \sqrt{\frac{100}{\pi}}$$

(ii) justify that this value of r gives a maximum value of V

(5)

The cylinder is melted down and reformed into a sphere of radius $p \, \text{cm}$.

(c) Find, to one decimal place, the greatest possible value of p

(3)

Question 11 continued	
	(Total for Question 11 is 12 marks)
	TOTAL FOR PAPER IS 100 MARKS

