Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P71818A
Publications Code 4PM1_01R_2301_ER
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme - not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked unless the candidate has replaced it with an alternative response.

- Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC-special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.
If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \quad \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \quad \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $x=\ldots$.
3. Completing the square:

$$
x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots
$$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration:

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks". General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question	Notes	Marks
1	$\frac{a-\sqrt{48}}{\sqrt{3}+1}=b \sqrt{3}-9$	
	Simplifies $\sqrt{48}=\sqrt{16} \sqrt{3}=4 \sqrt{3}$ - Seen anywhere.	B1
	Method A - Both sides multiplied by $\sqrt{3}+1$, collects terms and equates rational and irrational parts and obtains two equations at least one of which must be correct. $\begin{aligned} & a-4 \sqrt{3}=(b \sqrt{3}-9)(\sqrt{3}+1)=(3 b-9)+\sqrt{3}(b-9) \\ & \Rightarrow a=3 b-9 \text { and }-4=b-9 \end{aligned}$	M1
	Solves their equations. The equation $-4=b-9$ must be solved correctly and the result substituted into the second equation to find a Allow one processing error here. This is an A mark in Epen	M1
	For $a=6$ and $b=5$	$\begin{aligned} & \text { A1 } \\ & \text { [4] } \end{aligned}$
	Simplifies $\sqrt{48}=\sqrt{16} \sqrt{3}=4 \sqrt{3}$	B1
	Method B - rationalises the denominator, collects terms and equates rational and irrational parts and obtains two equations at least one of which must be correct. $\begin{aligned} & \frac{(a-4 \sqrt{3})}{(\sqrt{3}+1)} \times \frac{(\sqrt{3}-1)}{(\sqrt{3}-1)}=\frac{\sqrt{3}(a+4)-(a+12)}{2}=b \sqrt{3}-9 \\ & \Rightarrow \frac{-(a+12)}{2}=-9 \quad \frac{a+4}{2}=b \text { oe } \end{aligned}$	M1
	Solves their equations: The equation $\frac{-(a+12)}{2}=-9$ must be solved correctly and the result substituted into the second equation to find b Allow one processing error here. This is an A mark in Epen	M1
	For $a=6$ and $b=5$	$\begin{gathered} \text { A1 } \\ {[4]} \\ \hline \end{gathered}$
Total 4 marks		

Question	Scheme	Marks
$\mathbf{2}$	$\frac{\sin \angle B C A}{10}=\frac{\sin 50}{9} \Rightarrow \angle B C A=58.3381 \ldots{ }^{\circ} \Rightarrow 58.3^{\circ}, 121.7^{\circ}$	M1A1A1
	Total 3 marks	

Question	Notes	Marks
$\mathbf{2}$	Uses sine rule or any other appropriate trigonometry in triangle $A B C$ $\sin \angle B C A$ 10$=\frac{\sin 50}{9}$	M1
	Note: the perpendicular height of the triangle from B to $A C$ is 7.66044 cm. Their method must be complete for the award of this mark.	
	$\angle B C A=58.3381 \ldots{ }^{\circ}$	A1
	One possible value is awrt 58.3° and the other possible value is awrt 121.7°	A1 $[3]$

Question	Scheme	Marks
$\mathbf{3}$	$S_{n}<-450 \Rightarrow \frac{n}{2}(2 \times 16+[n-1](-5))<-450$	
	$\Rightarrow 37 n-5 n^{2}<-900 \Rightarrow 5 n^{2}-37 n-900>0$	M1A1
	$n=\frac{-(-37) \pm \sqrt{(-37)^{2}-4 \times 5 \times(-900)}}{2 \times 5} \Rightarrow n=17.617 .$. so $n=18$	M1A1
	[4]	

Total 4 marks

Question	Notes	Marks
3	Uses the correct summation formula and sets <, > or $=$ to -450 $S_{n}<-450 \Rightarrow \frac{n}{2}(2 \times 16+[n-1](-5))<-450$	M1
	Forms a correct 3TQ with their expression $37 n-5 n^{2}<-900 \Rightarrow 5 n^{2}-37 n-900>0$ Accept $<,>$ or $=0$ and accept terms in any order.	A1
	Attempts to solve their 3TQ using a valid method. [See General Guidance $\}$ $n=\frac{-(-37) \pm \sqrt{(-37)^{2}-4 \times 5 \times(-900)}}{2 \times 5} \Rightarrow n=\ldots$	M1
	$n=17.617 \ldots \quad \text { so } \quad n=18$ [Other root is $-10.217 \ldots$...]	A1

Total 4 marks

Question	Scheme	Marks
4(a)	$\begin{aligned} & \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \Rightarrow \overrightarrow{A B}=(5 \mathbf{i}+9 p \mathbf{j})-(p \mathbf{i}+2 p \mathbf{j}) \\ & \mathbf{i}(5-p)+\mathbf{j}(7 p)=Q(\mathbf{i}-2 \mathbf{j}) \Rightarrow 5-p=Q \text { and } 7 p=-2 Q \\ & 7 p=-2(5-p) \Rightarrow p=-2 \end{aligned}$	M1A1 M1M1 M1A1 [6]
(b)	$7\left('^{\prime}-2^{\prime}\right)=-2 Q \Rightarrow Q=7, \overrightarrow{A B}=7(\mathbf{i}-2 \mathbf{j})=7 \mathbf{i}-14 \mathbf{j}$ OR $\overrightarrow{A B}=(5 \mathbf{i}+9(-2) \mathbf{j})-((-2) \mathbf{i}+2(-2) \mathbf{j})=7 \mathbf{i}-14 \mathbf{j}$	M1A1ft [2] [M1A1ft]
(c)	$\overrightarrow{O A}=-2 \mathbf{i}-4 \mathbf{j} \Rightarrow\|\overrightarrow{O A}\|=\sqrt{(-2)^{2}+(-4)^{2}}=\sqrt{20}$ Unit vector is $\frac{1}{\sqrt{20}}(-2 \mathbf{i}-4 \mathbf{j})=\frac{\sqrt{5}}{5}(-\mathbf{i}-2 \mathbf{j})$	M1A1ft M1A1 [4]
Total 12 marks		

Question	Notes	Marks
4(a)	For the basic vector statement $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$	M1
	For the correct vector (simplified or unsimplified) $\overrightarrow{A B}=(5 \mathbf{i}+9 p \mathbf{j})-(p \mathbf{i}+2 p \mathbf{j})=[\mathbf{i}(5-p)+\mathbf{j}(7 p)]$	A1
	For setting their $\overrightarrow{A B}=Q(\mathbf{i}-2 \mathbf{j})$ where $Q \neq 1, Q \neq 0$ $\mathbf{i}(5-p)+\mathbf{j}(7 p)=Q(\mathbf{i}-2 \mathbf{j})$	M1
	$\begin{array}{\|l} \hline \text { For equating components of } \mathbf{i} \text { and } \mathbf{j} \\ \mathbf{i} \quad 5-p=Q \\ \mathbf{j} \end{array} \quad 7 p=-2 Q$	M1
	Solving the simultaneous equations by any method to find the value of p $7 p=-2(5-p) \Rightarrow p=\ldots$	M1
	For the value of $p=-2$	$\begin{aligned} & \text { A1 } \\ & {[6]} \end{aligned}$
(b)	For finding the value of k and using it to find the vector $\overrightarrow{A B}$ $7('-2 ')=-2 Q \Rightarrow Q=7$	M1
	For the correct vector $\overrightarrow{A B}=7(\mathbf{i}-2 \mathbf{j})=7 \mathbf{i}-14 \mathbf{j}$	$\begin{gathered} \mathrm{A} 1 \mathrm{ft} \\ {[2]} \end{gathered}$
	ALT	
	For substituting their value of p to find the vector $\overrightarrow{A B}$ $\overrightarrow{A B}=\mathbf{i}(5-[-2])+\mathbf{j}(7[-2])=\ldots$	M1
	$\overrightarrow{A B}=\mathbf{i}(5-p)+\mathbf{j}(7 p) \Rightarrow \overrightarrow{A B}=7 \mathbf{i}-14 \mathbf{j}$	$\begin{gathered} \hline \text { A1ft } \\ {[2]} \\ \hline \end{gathered}$
(c)	$\overrightarrow{O A}=-2 \mathbf{i}-4 \mathbf{j} \Rightarrow\|\overrightarrow{O A}\|=\sqrt{(-2)^{2}+(-4)^{2}}=\ldots$	M1
	$\|\overrightarrow{O A}\|=\sqrt{20}$	A1ft
	Unit vector in the direction of $\overrightarrow{O A}$ is $\frac{1}{\sqrt{20}}(-2 \mathbf{i}-4 \mathbf{j})$	M1
	Unit vector in the required form $\frac{\sqrt{5}}{5}(-\mathbf{i}-2 \mathbf{j})$ Allow $\frac{\sqrt{5}}{5}(\mathbf{i}+2 \mathbf{j})$ provided no processing errors seen.	$\begin{aligned} & \text { A1 } \\ & \text { [4] } \end{aligned}$

Question	Scheme	Marks
5(a)	$\begin{aligned} & \mathrm{f}(-2)=-16 a+4+2 b+3 a=0 \text { and } \mathrm{f}(1)=2 a+1-b+3 a=0 \\ & -13 a+4+2 b=0 \text { and } \begin{array}{l} 5 a+1-b=0 \Rightarrow a=2^{*} \\ b=11 \end{array} \end{aligned}$	$\begin{gathered} \text { M1M1 } \\ \text { M1A1cso } \\ \text { A1 } \\ {[5]} \end{gathered}$
(b)	$\mathrm{f}(x)=4 x^{3}+x^{2}-11 x+6=(4 x-3)(x+2)(x-1)$	$\begin{gathered} \hline \text { M1A1 } \\ {[2]} \end{gathered}$
(c)	$\begin{aligned} & \mathrm{h}(y)=2^{(3 y+2)}+2^{2 y}-11\left(2^{y}\right)+6 \Rightarrow \mathrm{~h}(y)=4\left(2^{y}\right)^{3}+\left(2^{y}\right)^{2}-11\left(2^{y}\right)+6 \\ & x=2^{y} \Rightarrow 2^{y}-1=0,2^{y}+2=0,4\left(2^{y}\right)-3=0 \\ & 2^{y}=1 \Rightarrow y=0 \\ & 2^{y}=\frac{3}{4} \Rightarrow y=\log _{2} \frac{3}{4}=-0.4150 \ldots \Rightarrow y=-0.415 \\ & {\left[2^{y}=-2 \text { no solution }\right]} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { M1 } \\ \text { B1 } \\ \text { M1A1 } \\ \text { [5] } \end{gathered}$

Total 12 marks

Question	Notes	Marks
(a)	For substituting ± 2 into $\mathrm{f}(x)=0$ Allow sign errors	M1
	For substituting ± 1 into $\mathrm{f}(x)=0$ Allow sign errors	M1
	For solving the resulting pair of simultaneous equations. $-13 a+4+2 b=0$ $5 a+1-b=0$	
	For $a=2 *$	A1 cso
	For $b=11$	A1
	ALT uses polynomial division.	M1
	Multiplies out the product of the two factors to give: $(x+2)(x-1)=x^{2}+x-2$ This must be correct.	

	Uses polynomial division to give as a minimum: $2 a x+(1-2 M)$ where M is a constant. $x ^ { 2 } + x - 2 \longdiv { 2 a x ^ { 3 } + x ^ { 2 } - b x + 3 a } \frac { 2 a x + (1 - 2 a) } { }$	M1
	Equates coefficients: $\begin{aligned} & \left(x^{2}+x-2\right)(2 a x+(1-2 a))=2 a x^{3}+x^{2}-b x+3 a \\ & \Rightarrow 2 a x^{3}+x^{2}+x(1-6 a)+(-2+4 a)=2 a x^{3}+x^{2}-b x+3 a \\ & 3 a=4 a-2 \\ & 1-6 a=-b \end{aligned}$	M1
	For $a=2$ *	A1 cso
	For $b=11$	A1
(b)	Divides $\mathrm{f}(x)=4 x^{3}+x^{2}-11 x+6$ by either $\left[x^{2}+x-2\right]$ or $x+2$ or $x-1$ Either, $\begin{aligned} & {\left[x ^ { 2 } + x - 2 \longdiv { 4 x + k } \begin{array} { l } { 4 x ^ { 3 } + x ^ { 2 } - 1 1 x + 6 } \end{array}\right]} \\ & x + 2 \longdiv { 4 x ^ { 2 } - 7 x \pm k } \\ & x - 1 \longdiv { 4 x ^ { 3 } - 1 1 x + 6 } + x ^ { 2 } - 1 1 x + 6 \end{aligned}$	M1
	For the correct factorisation of $\mathrm{f}(x)$ $4 x^{2}-7 x+3=(4 x-3)(x-1) \Rightarrow \mathrm{f}(x)=(4 x-3)(x-1)(x+2)$	$\begin{aligned} & \mathrm{A} 1 \\ & {[2]} \\ & \hline \end{aligned}$
(c)	For manipulating the indices to achieve $\Rightarrow \mathrm{h}(y)=4\left(2^{y}\right)^{3}+\left(2^{y}\right)^{2}-11\left(2^{y}\right)+6$ OR Uses the factorised expression to obtain: $\mathrm{h}(y)=\left(2^{y}+2\right)\left(2^{y}-1\right)\left(4\left(2^{y}\right)-3\right)$	M1
	Substitutes $x=2^{y}$ into the factorised $\mathrm{f}(x)$ to find either $2^{y}-1=0$ or $2^{y}+2=0$ or $4\left(2^{y}\right)-3=0$	M1
	For $2^{y}=1 \Rightarrow y=0$	B1
	For $4\left(2^{y}\right)=3 \Rightarrow 2^{y}=\frac{3}{4} \Rightarrow y=\log _{2} \frac{3}{4}$	M1
	For awrt $y=-0.4150 \ldots \Rightarrow y \approx-0.415$ [No solution for $2^{y}=-2$ - must reject]	$\begin{aligned} & \text { A1 } \\ & \text { [5] } \end{aligned}$

Question	Scheme	Marks
6(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+1\right) 2 x \mathrm{e}^{\left(x^{2}+1\right)}-2 x \mathrm{e}^{\left(x^{2}+1\right)}}{\left(x^{2}+1\right)^{2}}$	M1A1A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x \mathrm{e}^{\left(x^{2}+1\right)}\left(x^{2}+1-1\right)}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{3} \mathrm{e}^{\left(x^{2}+1\right)}}{\left(x^{2}+1\right)^{2}}$	M1A1 cso
[5]		

Question	Notes	Marks
6(a)	$y=\frac{\mathrm{e}^{\left(x^{2}+1\right)}}{x^{2}+1}$	
	Using Quotient Rule $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}+1\right) 2 x \mathrm{e}^{\left(x^{2}+1\right)}-2 x \mathrm{e}^{\left(x^{2}+1\right)}}{\left(x^{2}+1\right)^{2}}$ - For an attempt to differentiate both $\mathrm{e}^{\left(x^{2}+1\right)}$ and $x^{2}+1$ Award for either $\mathrm{e}^{x^{2}+1} \Rightarrow 2 x \mathrm{e}^{x^{2}+1}$ or $x^{2}+1 \Rightarrow 2 x$ but both must be changed expressions. - Numerator is to have two terms in either order subtracted. - Denominator must be $\left(x^{2}+1\right)^{2}$	M1
	At least one term fully correct in the numerator	A1
	Fully correct unsimplified.	A1
	For an attempt to take out a common factor of either $2 x$ or $\mathrm{e}^{\left(x^{2}+1\right)}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x \mathrm{e}^{\left(x^{2}+1\right)}\left(x^{2}+1-1\right)}{\left(x^{2}+1\right)^{2}}$ OR Multiplies out the first term in the numerator $\frac{2 x^{3} \mathrm{e}^{\left(x^{2}+1\right)}+2 x \mathrm{e}^{\left(x^{2}+1\right)}-2 x \mathrm{e}^{\left(x^{2}+1\right)}}{\left(x^{2}+1\right)^{2}}$	M1 [M1]

Question	Scheme	Marks
7(a)	$v=1^{2}-10 \times 1+28=19[\mathrm{~m} / \mathrm{s}]$	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$
(b)	$\begin{aligned} & s=\int\left(t^{2}-10 t+28\right) \mathrm{d} t=\frac{t^{3}}{3}-\frac{10 t^{2}}{2}+28 t(+c) \\ & 24=\frac{3^{3}}{3}-\frac{10 \times 3^{2}}{2}+28 \times 3+c \Rightarrow c=-24 \Rightarrow\left[s=\frac{t^{3}}{3}-\frac{10 t^{2}}{2}+28 t-24\right] \\ & t=5, \quad s=\frac{5^{3}}{3}-\frac{10 \times 5^{2}}{2}+28 \times 5-24=\frac{98}{3}[\mathrm{~m}] \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1A1 } \\ \\ \text { M1A1 } \\ \hline[5] \\ \hline \end{gathered}$
(c)	$\frac{\mathrm{d} v}{\mathrm{~d} t}=2 t-10$ when $t=9$, acceleration $=8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$
(d)	(i) $v=(t-5)^{2}+3$ Irrespective of the value of $t v \geqslant 3$ so the particle never comes to rest. ALT $b^{2}-4 a c<0 \Rightarrow(-10)^{2}-4 \times 1 \times 28=-12$ No real solutions so the particle never comes to rest. (ii) Least value of v is $3[\mathrm{~m} / \mathrm{s}]$	M1 A1 [M1 A1] B1 [3]
Total 11 marks		

Question	Notes	Marks
7(a)	$v=t^{2}-10 t+28$	B1
	(b)	For an attempt to integrate the given expression for v $[$ See general guidance for the definition of an attempt $]$ $s=\int\left(t^{2}-10 t+28\right) \mathrm{d} t=\frac{t^{3}}{3}-\frac{10 t^{2}}{2}+28 t(+c)$
	For finding the value of c. They cannot score this mark without $+c$ $24=\frac{3^{3}}{3}-\frac{10 \times 3^{2}}{2}+28 \times 3+c \Rightarrow c=\ldots$	M1
	For the correct expression for s. This need not be explicitly stated. $s=\frac{t^{3}}{3}-\frac{10 t^{2}}{2}+28 t-24$	M1

	Award for the correct value of c seen -24 [m]	
	For using their integrated expression for s to find a value of the displacement when $t=5$ $s=\frac{5^{3}}{3}-\frac{10 \times 5^{2}}{2}+28 \times 5-24=\ldots$	M1
	For the correct value of $s=\frac{98}{3}[\mathrm{~m}]$ Accept $s=32.7$ [or better]	$\begin{aligned} & \hline \text { A1 } \\ & {[5]} \end{aligned}$
(c)	For an attempt to differentiate the given v and substituting $t=9$ into their differentiated expression. $\frac{\mathrm{d} v}{\mathrm{~d} t}=2 t-10 \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} t}=2 \times 9-10=\ldots$	M1
	For acceleration $=8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	$\begin{aligned} & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$
(d)(i)	Method A Completes the square to give $\quad v=(t-5)^{2}+3$	M1
	Concludes that at the minimum velocity [$3 \mathrm{~m} / \mathrm{s}] t=5$ so P never comes to rest	A1
	Method B Finds the value of the discriminant $b^{2}-4 a c<0 \Rightarrow(-10)^{2}-4 \times 1 \times 28=-12$	M1
	Concludes that as there are no real solutions, so \boldsymbol{P} does not come to rest.	A1
	Method C Solves the 3TQ to give the following two [non-real] values of t : $5+\sqrt{3} \mathrm{i}$ and $5-\sqrt{3} \mathrm{i}$ or $(t-[5+\sqrt{3} \mathrm{i}])(t-[5+\sqrt{3} \mathrm{i}])=0$	M1
	Concludes that as there are no real solutions, so P does not come to rest.	A1
	Method D Uses their result from (c) $\frac{\mathrm{d} v}{\mathrm{~d} t}=2 t-10=0 \Rightarrow t=5$	M1
	Concludes that at the minimum velocity [$3 \mathrm{~m} / \mathrm{s}] t=5$ so P never comes to rest	A1
(ii)	For the correct value of $v=3[\mathrm{~m} / \mathrm{s}\}$	$\begin{aligned} & \text { B1 } \\ & {[3]} \end{aligned}$

Question	Scheme	Marks
8(a)	$\begin{aligned} & \int 17+2 x-3 x^{2} \mathrm{~d} x=17 x+\frac{2 x^{2}}{2}-\frac{3 x^{3}}{3}+k \\ & 0=\left(17 \times(-1)+\frac{2 \times(-1)^{2}}{2}-\frac{3 \times(-1)^{3}}{3}\right)+k \Rightarrow k=15 \\ & y=15+17 x+x^{2}-x^{3} \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$
(b)	$\begin{aligned} & \frac{\left(15+17 x+x^{2}-x^{3}\right)}{(x+1)}=-x^{2}+2 x+15 \\ & -x^{2}+2 x+15=(x+3)(5-x) \\ & a=-3,[-1] \text { and } b=5 \end{aligned}$ When $x=0 \quad y=15$ so $c=15$	M1A1 M1A1 A1 B1 [6]
(c)	$\int_{0}^{5}\left(15+17 x+x^{2}-x^{3}\right) \mathrm{d} x-\frac{1}{2} \times 5 \times 15$ OR $\begin{aligned} & \int_{0}^{5}\left(15+17 x+x^{2}-x^{3}\right) \mathrm{d} x-\int_{0}^{5}(15-3 x) \mathrm{d} x \\ & \int_{0}^{5}\left(15+17 x+x^{2}-x^{3}\right) \mathrm{d} x=\left[15 x+\frac{17 x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{5} \\ & \left(15 \times 5+\frac{17 \times 5^{2}}{2}+\frac{5^{3}}{3}-\frac{5^{4}}{4}\right)-(0)=\left(\frac{2075}{12}\right) \end{aligned}$ Area of triangle $\text { Area }=\frac{1}{2} \times 5 \times 15=37.5$ OR $\text { Area }=\int_{0}^{5}(15-3 x) \mathrm{d} x=\left[15 x-\frac{3 x^{2}}{2}\right]_{0}^{5}=37.5$ For the correct area of $R=\frac{2075}{12}-37 \frac{1}{2}=\frac{1625}{12}=135 \frac{5}{12}$	M1 M1 M1 B1 [B1] A1 [5]
Total 15 marks		

Question	Notes	Marks
8(a)	$\mathrm{f}^{\prime}(x)=17+2 x-3 x^{2}$	
	For an attempt to integrate $\mathrm{f}^{\prime}(x)$ $y=17 x+\frac{2 x^{2}}{2}-\frac{3 x^{3}}{3}+(k)$	M1
	For the correct integral including a constant of integration $y=17 x+\frac{2 x^{2}}{2}-\frac{3 x^{3}}{3}+k$	A1
	For substituting $(-1,0)$ into their integrated expression, which must include a constant of integration. $0=\left(17 \times(-1)+\frac{2 \times(-1)^{2}}{2}-\frac{3 \times(-1)^{3}}{3}\right)+k \Rightarrow(k=15)$	M1
	For writing the equation in the required form $y=15+17 x+x^{2}-x^{3} *$ This is a given equation. Every step above must be seen for the award of full marks.	$\begin{aligned} & \text { A1 } \\ & \text { cso } \\ & {[4]} \end{aligned}$
(b)	Divides $\left(15+17 x+x^{2}-x^{3}\right)$ by $(x+1)$ $\frac{Q+2 x+x^{2}}{x + 1 \longdiv { 1 5 + 1 7 x + x ^ { 2 } - x ^ { 3 } }}$ OR Equates coefficients $\left(15+17 x+x^{2}-x^{3}\right)=(x+1)\left(A x^{2}+B x+c\right) \Rightarrow(x+1)\left(-x^{2}+2 x+Q\right)$ Where Q is a constant Minimal working here is sight of the quadratic factor.	M1
	For obtaining the correct 3TQ $-x^{2}+2 x+15$	A1
	For factorising their 3TQ [or otherwise solving] $-x^{2}+2 x+15=(x+3)(5-x)$	M1A1
	For $a=-3,[-1]$ and $b=5$ identified clearly.	A1
	SC No working seen [use of a root finder on a calculator]	
	For $(x+1)(x-5)(x+3)$ seen leading to $a=-3$ and $b=5$ with no working award: M0A0MA1A1	
	For $a=-3$ and $b=5$ seen with no other working seen award: M0A0M0A0A1	
	For the value of $c=15$	B1
(c)	For writing a correct expression for the area of R with the correct limits $\int_{0}^{5}\left(15+17 x+x^{2}-x^{3}\right) \mathrm{d} x-\frac{1}{2} \times 5 \times 15$ OR	M1

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{10}{*}{} \& \multirow[t]{10}{*}{\begin{tabular}{l}
\[
\int_{0}^{5}\left(15+17 x+x^{2}-x^{3}\right) \mathrm{d} x-\int_{0}^{5}(15-3 x) \mathrm{d} x
\] \\
For an attempt to integrate the expression for the curve. \\
[Ignore limits for this mark] \\
Area \(=\int_{0}^{5}\left(15+17 x+x^{2}-x^{3}\right) \mathrm{d} x=\left[15 x+\frac{17 x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{5}\) \\
For evaluating their integral using their limits.
\[
\text { Area }=\left(15 \times 5+\frac{17 \times 5^{2}}{2}+\frac{5^{3}}{3}-\frac{5^{4}}{4}\right)-(0)=\left(\frac{2075}{12}\right)
\] \\
For the area of the triangle \\
Area \(=\frac{1}{2} \times 5 \times 15=37.5\) \\
ALT \\
Integrates the line
\[
\text { Area }=\int_{0}^{5}(15-3 x) \mathrm{d} x=\left[15 x-\frac{3 x^{2}}{2}\right]_{0}^{5}=37.5
\] \\
For the correct area of \(R\)
\[
\frac{2075}{12}-37 \frac{1}{2}=\frac{1625}{12}=135 \frac{5}{12}
\] \\
ALT \\
For writing an expression for the area of \(R\) with the correct limits.
\[
\int_{0}^{5}\left(15+17 x+x^{2}-x^{3}\right) \mathrm{d} x-\int_{0}^{5}(15-3 x) \mathrm{d} x=\left[\int_{0}^{5}\left(20 x+x^{2}-x^{3}\right) \mathrm{d} x\right]
\] \\
Award the B mark for a correct expression for the combined area. For an attempt to integrate the expression for the combined area or just the curve. \\
[Ignore limits for this mark]
\[
\text { Area }=\int_{0}^{5}\left(20 x+x^{2}-x^{3}\right) \mathrm{d} x=\left[\frac{20 x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{5}
\] \\
For evaluating their integral using their limits, but the lower limit must be 0 .
\[
\text { Area }=\left(\frac{20 \times 5^{2}}{2}+\frac{5^{3}}{3}-\frac{5^{4}}{4}\right)=\left(\frac{1625}{12}\right)
\] \\
For the correct final area.
\end{tabular}} \& \multirow[b]{2}{*}{M1} \\
\hline \& \& \\
\hline \& \& M1 \\
\hline \& \& B1

[B1]

\hline \& \& A1
[5]

\hline \& \&

\hline \& \& M1
B1

\hline \& \& M1

\hline \& \& M1

\hline \& \&

\hline \& Total \& arks

\hline
\end{tabular}

Question	Scheme	Marks
9(a)	$A C=\sqrt{12^{2}+12^{2}}=\sqrt{288}=12 \sqrt{2}$	M1A1 [2]
(b)	$x=\frac{\frac{12 \sqrt{2}}{2}}{\cos 30^{\circ}}=\sqrt{96}=(4 \sqrt{6}) *$	M1A1 cso [2]
(c)	$\begin{aligned} & \cos \angle A O B=\frac{96+96-12^{2}}{2 \times \sqrt{96} \times \sqrt{96}} \Rightarrow \angle A O B=75.522 \ldots{ }^{\circ} \\ & \text { Area } \triangle O A B=\frac{1}{2} \times \sqrt{96} \times \sqrt{96} \times \sin ^{\prime} 75.522^{\circ}=(46.4758 \ldots) \\ & 4 \times 46.4758+12^{2}=329.90 \ldots \Rightarrow \text { Area }=330\left[\mathrm{~m}^{2}\right] \end{aligned}$	M1A1 M1 M1A1 [5]
(d)	$\left[\angle O B C=\frac{180-75.522}{2}=52.239^{\circ}\right]$ Let Y on $O B$ be the foot of the perpendicular from A to $O B$ $A Y=12 \sin 52.239^{\circ}=(9.4868 \ldots)$ $\cos \angle A Y C=\frac{' 9.4868^{\prime 2}+' 9.4868^{\prime 2}-288}{2 \times^{\prime} 9.4868^{\prime} \times{ }^{\prime} 9.4868^{\prime}} \Rightarrow \angle A Y C=126.87 \ldots \approx 127^{[0]}$	M1 A1 M1A1 [4]
Total 13 marks		

Question	Notes	Marks
9(a)	For using Pythagoras theorem on triangle $A B C$ or triangle $A D C$ $A C=\sqrt{12^{2}+12^{2}}=\ldots$	M1
	For the correct value of $A C$ $A C=\sqrt{288}=12 \sqrt{2}$	$\begin{aligned} & \text { A1 } \\ & {[2]} \end{aligned}$
(b)	Let the intersection of $A C$ and $B D$ be X Uses any appropriate trigonometry on triangle $O A X$ For example; $x=\frac{\frac{12 \sqrt{2}}{2}}{\cos 30^{\circ}}=\ldots$ OR $\frac{\sin 120^{\circ}}{12 \sqrt{2}}=\frac{\sin 30^{\circ}}{O A} \Rightarrow O A=\ldots \text { OR }(12 \sqrt{2})^{2}=x^{2}+x^{2}-2 \times x \times x \cos 120 \Rightarrow x=\ldots$	M1
	For the correct value of x	A1 cso

	$x=\sqrt{96}=(4 \sqrt{6}) *$	[2]
(c)	For using trigonometry to find angle $\angle A O B$ $\cos \angle A O B=\frac{96+96-12^{2}}{2 \times \sqrt{96} \times \sqrt{96}}=\ldots$	M1
	$\angle A O B=75.522 . . .{ }^{\circ}$	A1
	Area of triangle $O A B$ $\text { Area }=\frac{1}{2} \times \sqrt{96} \times \sqrt{96} \times \sin ^{\prime} 75.522^{\circ}=(46.4758 \ldots)$	M1
	Total area of the pyramid $=4 \times 46.4758+12^{2}=(329.90 \ldots$.	M1
	For the correct final area $=$ awrt $330\left(\mathrm{~cm}^{2}\right)$	$\begin{aligned} & \hline \text { A1 } \\ & \text { [5] } \end{aligned}$
	ALT	
	Height of the triangle of one of the triangular faces: $h=\sqrt{(4 \sqrt{6})^{2}-6^{2}}=\ldots$	M1
	$h=2 \sqrt{15}$	A1
	Area of triangle $O A B=\frac{1}{2} \times 2 \sqrt{15} \times 12=12 \sqrt{15}=(46.4758 \ldots)$	M1
	Total area of the pyramid $=4 \times 12 \sqrt{15}+144=(329.903 \ldots)$	M1
	For the correct final area $=$ awrt $330\left(\mathrm{~cm}^{2}\right)$ Allow an exact answer of $48 \sqrt{15}+144(\mathrm{~cm})^{2}$ oe	A1
(d)	$\cos \angle A O B=\frac{96+96-12^{2}}{2 \times \sqrt{96} \times \sqrt{96}}=75.522^{\circ}$ or $\angle O B C=\frac{180^{\circ}-75.522^{\circ}}{2}=52.239^{\circ}$	
	Let Y on $O B$ be the foot of the perpendicular from A to $O B$ Length $A Y=12 \sin 52.239^{\circ}=(9.4868 \ldots)$ OR Length $A Y=4 \sqrt{6} \sin 75.522^{\circ}=(9.4868 \ldots)$	$\begin{aligned} & \text { M1A1 } \\ & \text { [M1A1] } \end{aligned}$
	For the appropriate trigonometry on triangle $A Y C$ to find angle $A Y C$ $\cos \angle A Y C=\frac{' 9.4868^{\prime 2}+' 9.4868^{\prime 2}-288}{2 \times ' 9.4868^{\prime} \times ' 9.4868^{\prime}} \Rightarrow(\angle A Y C=126.87)$	M1
	Angle between plane $A O B$ and plane $O B C=$ awrt $127\left[{ }^{\circ}\right]$	$\begin{aligned} & \hline \text { A1 } \\ & \text { [4] } \end{aligned}$

Question	Scheme	Marks
10(a)	$\begin{aligned} & \cos (A-B)=\cos A \cos B+\sin A \sin B \\ & \cos (A+B)=\cos A \cos B-\sin A \sin B \\ & \cos (A-B)-\cos (A+B)=\sin A \sin B-(-\sin A \sin B)=2 \sin A \sin B^{*} \end{aligned}$	M1A1cso [2]
(b)	$[A-B=5 \theta, A+B=9 \theta \Rightarrow A=7 \theta, B=2 \theta]$ $\cos 5 \theta-\cos 9 \theta=2 \sin 7 \theta \sin 2 \theta \quad *$	$\begin{aligned} & \text { B1 } \\ & \text { cso } \\ & {[1]} \end{aligned}$
(c)	$\begin{aligned} & \sqrt{3} \sin 7 \theta=2 \sin 7 \theta \sin 2 \theta \Rightarrow 0=2 \sin 7 \theta \sin 2 \theta-\sqrt{3} \sin 7 \theta \\ & 0=\sin 7 \theta(2 \sin 2 \theta-\sqrt{3}) \Rightarrow \sin 7 \theta=0,2 \sin 2 \theta-\sqrt{3}=0 \\ & \sin 7 \theta=0 \Rightarrow 7 \theta=0, \pi, 2 \pi \Rightarrow \theta=\frac{\pi}{7}, \frac{2 \pi}{7} \\ & 2 \sin 2 \theta-\sqrt{3}=0 \Rightarrow \sin 2 \theta=\frac{\sqrt{3}}{2} \Rightarrow 2 \theta=\frac{\pi}{3}, \frac{2 \pi}{3} \Rightarrow \theta=\frac{\pi}{6}, \frac{\pi}{3} \end{aligned}$	M1A1 M1 M1A1 M1A1 [7]
(d)	$\begin{aligned} & \tan 2 x=\frac{\sin 2 x}{\cos 2 x} \Rightarrow \tan 2 x \cos 2 x=\sin 2 x \\ & \int_{0}^{\frac{\pi}{7}} 8 \sin 7 x \sin 2 x \mathrm{~d} x=\left[\int_{0}^{\frac{\pi}{7}} 4 \times(2 \sin 7 x \sin 2 x) \mathrm{d} x\right] \\ & \begin{aligned} & \int_{0}^{\frac{\pi}{7}} 4(\cos 5 x-\cos 9 x) \mathrm{d} x=4\left[\frac{\sin 5 x}{5}-\frac{\sin 9 x}{9}\right]_{0}^{\frac{\pi}{7}} \\ & 4\left[\frac{\sin 5 x}{5}-\frac{\sin 9 x}{9}\right]_{0}^{\frac{\pi}{7}}=4\left[\left(\frac{\sin 5 \times \frac{\pi}{7}}{5}-\frac{\sin 9 \times \frac{\pi}{7}}{9}\right)-\left(\frac{\sin 0}{5}-\frac{\sin 0}{9}\right)\right] \# \\ &=0.9729 \ldots \approx 0.973 \end{aligned} \end{aligned}$	M1 M1 M1M1 M1A1 [6]
Total 16 marks		

Question	Notes	Marks
10(a)	From the formula sheet $\begin{aligned} & \cos (A-B)=\cos A \cos B+\sin A \sin B \\ & \cos (A+B)=\cos A \cos B-\sin A \sin B \end{aligned}$ Subtracts the two equations to give: $\cos (A-B)-\cos (A+B)=\sin A \sin B-(-\sin A \sin B)$	M1
	For the correct identity as shown with no errors, $\cos (A-B)-\cos (A+B)=2 \sin A \sin B$ *	A1 cso [2]
(b)	For finding the value of A and the value of B $\begin{aligned} & A-B=5 \theta, \quad A+B=9 \theta \\ & \Rightarrow A=7 \theta, B=2 \theta \end{aligned}$ Or as a minimum: $\cos (7 \theta-2 \theta)-\cos (7 \theta+2 \theta)=2 \sin 7 \theta \sin 2 \theta \quad *$	B1cso [1]
(c)	Sets $\sqrt{3} \sin 7 \theta=2 \sin 7 \theta \sin 2 \theta$	M1
	Achieves the correct equation allow the terms in any order. $0=2 \sin 7 \theta \sin 2 \theta-\sqrt{3} \sin 7 \theta$	A1
	Factorises their equation $0=\sin 7 \theta(2 \sin 2 \theta-\sqrt{3}) \Rightarrow \sin 7 \theta=0,2 \sin 2 \theta-\sqrt{3}=0$	M1
	For finding at least one correct value for θ using $\sin 7 \theta=0$ $\sin 7 \theta=0 \Rightarrow 7 \theta=0, \pi, 2 \pi \Rightarrow \theta=\frac{\pi}{7}, \frac{2 \pi}{7}$	M1
	For both correct values $\theta=\frac{\pi}{7}, \frac{2 \pi}{7}$	A1
	For finding one correct value of θ using $2 \sin 2 \theta-\sqrt{3}=0$ $2 \sin 2 \theta-\sqrt{3}=0 \Rightarrow \sin 2 \theta=\frac{\sqrt{3}}{2} \Rightarrow 2 \theta=\frac{\pi}{3}, \frac{2 \pi}{3} \Rightarrow \theta=\frac{\pi}{6}, \frac{\pi}{3}$	M1
	For both correct values $\theta=\frac{\pi}{6}, \frac{\pi}{3}$	$\begin{aligned} & \text { A1 } \\ & {[7]} \\ & \hline \end{aligned}$
(d)	Uses the identity for $\tan 2 x=\frac{\sin 2 x}{\cos 2 x} \Rightarrow \tan 2 x \cos 2 x=\sin 2 x$	M1
	Substitutes the above into $8 \sin 7 x \cos 2 x \tan 2 x$ to give $\int_{0}^{\frac{\pi}{7}} 8 \sin 7 x \sin 2 x \mathrm{~d} x=\left[\int_{0}^{\frac{\pi}{7}} 4 \times(2 \sin 7 x \sin 2 x) \mathrm{d} x\right]$ Ignore integral sign and limits for this mark.	M1
	For substituting $\cos 5 x-\cos 9 x$ for $2 \sin 7 x \sin 2 x$ to give $\int_{0}^{\frac{\pi}{7}} 4(\cos 5 x-\cos 9 x) d x$ Ignore integral sign and limits for this mark.	M1

	Integrates $\int_{0}^{\frac{\pi}{7}} 4(\cos 5 x-\cos 9 x) d x=4\left[\frac{\sin 5 x}{5}-\frac{\sin 9 x}{9}\right]_{0}^{\frac{\pi}{7}}$ Ignore limits for this mark. As a minimum they must obtain: $\left(\pm \frac{\sin 5 x}{5} \pm \frac{\sin 9 x}{9}\right)$ for the integration.	M1
	Substitutes the limits the correct way around $\begin{aligned} 4\left[\frac{\sin 5 x}{5}-\frac{\sin 9 x}{9}\right]_{0}^{\frac{\pi}{7}} & =4\left[\left(\frac{\sin 5 \times \frac{\pi}{7}}{5}-\frac{\sin 9 \times \frac{\pi}{7}}{9}\right)-\left(\frac{\sin 0}{5}-\frac{\sin 0}{9}\right)\right] \\ & =(0.9729 \ldots) \end{aligned}$	M1
	For the correct value of $\int_{0}^{\frac{\pi}{7}} 8 \sin 7 x \cos 2 x \tan 2 x \mathrm{~d} x=0.973$	A1 [6]
Total 16 marks		

