Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE
In Further Pure Mathematics (4PM1)
Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P71817A
Publications Code 4PM1_01_2301_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme - not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked unless the candidate has replaced it with an alternative response.

- Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations

```
cao - correct answer only
ft - follow through
isw - ignore subsequent working
SC - special case
oe - or equivalent (and appropriate)
dep - dependent
indep - independent
awrt - answer which rounds to
eeoo - each error or omission
```

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

You must always check the working in the body of the script (and on any diagrams) irrespective of whether the final answer is correct or incorrect and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.
If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \quad \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text { where }|p q|=|c| \text { and }|m n|=|a| \quad \text { leading to }
\end{aligned}
$$

$$
x=\ldots
$$

2. Formula:

Attempt to use the correct formula (shown explicitly or implied by working) with values for a, b and c, leading to $x=\ldots$.
3. Completing the square:

$$
x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0 \quad \text { leading to } x=\ldots
$$

4. Use of calculators

Unless the question specifically states 'show' or 'prove' accept correct answers from no working. If an incorrect solution is given without any working do not award the Method mark.

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration:

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula:

Generally, the method mark is gained by either
quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values
or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....")

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

International GCSE Further Pure Mathematics - Paper 1 Mark scheme

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Paper 1}

\hline Question number \& Scheme \& Marks

\hline 1

ALT \& \[
$$
\begin{aligned}
& a+9 d+a+10 d+a+11 d \text { or } 3 a+30 d=129 \text { oe } \\
& a+18 d+a+19 d+a+20 d=237 \text { or } 3 a+57 d=237 \text { oe } \\
& 27 d=108 \text { oe } \quad(d=4) \\
& \left(a_{1}=\right) 3 \\
& a_{10}+a_{10}+d+a_{10}+2 d \text { or } 3 a_{10}+3 d=129 \text { oe } \\
& a_{10}+9 d+a_{10}+10 d+a_{10}+11 d=237 \text { or } 3 a_{10}+30 d=237 \text { oe } \\
& 27 d=108 \text { oe } \quad(d=4) \\
& \left(a_{1}=\right) 3
\end{aligned}
$$

\] \& | M1 M1 |
| :--- |
| M1 |
| A1 |
| (4) |
| M1 M1 |
| M1 |
| A1 |

\hline \multicolumn{3}{|r|}{Total 4 marks}

\hline
\end{tabular}

Mark	Additional Guidance
M1	For fully correct use of $a+(n-1) d$ in an equation for the $10^{\text {th }}, 11^{\text {th }}$ and $12^{\text {th }}$ terms OR the $19^{\text {th }}, 20^{\text {th }}$ and $21^{\text {st }}$ terms simplified or unsimplified oe
M1	For fully correct use of $a+(n-1) d$ in an equation for the $10^{\text {th }}, 11^{\text {th }}$ and $12^{\text {th }}$ terms AND the $19^{\text {th }}, 20^{\text {th }}$ and $21^{\text {st }}$ terms simplified or unsimplified oe
M1	For an attempt to solve their equations simultaneously, allow one processing error. Must eliminate one variable and arrive at a value for a or d.
A1	For $\left(a / a_{1}=\right) 3$
	Allow mixed use of a or a_{1} throughout

Question number	Scheme	Marks
2 a	(Gradient of $A B=$) $\frac{0-3}{4+5}\left(=-\frac{1}{3}\right)$	M1
	$\text { Gradient of the perpendicular }=-\frac{1}{"-\frac{1}{3} "}(=3)$	M1
	$y-5=-\frac{1}{"-\frac{1}{3} "}(x+1) \quad \text { or } y-5=" 3 "(x+1) \text { or } y=3 x+8$	M1
	$3 x-y+8=0$ or $-3 x+y-8=0$ oe	$\begin{aligned} & \text { A1 } \\ & \text { (4) } \end{aligned}$
b	(Equation of $A B=$) $y-0="-\frac{1}{3}$ " $(x-4)$ or $y=-\frac{1}{3} x+\frac{4}{3}$ oe	M1
	Solve $y-3 x-8=0$ and $y-0=-\frac{1}{3}(x-4)$ oe simultaneously $0=\frac{10}{3} x+\frac{20}{3}$ oe	M1
	$x=-2 \quad y=2$ or $(-2,2) *$	A1 cso (3)
	Alternative for final 2 marks (substitutes ($\mathbf{- 2 , 2}$) into each equation)) Line l is $3 x-y+8=0$	
	When $x=-2$ and $y=2,-6-2+8=0 \Rightarrow D$ lies on l $A B$ is $y=-\frac{1}{3} x-4$	\{M1 \}
	When $x=-2$ and $y=2, \quad-\frac{1}{3}-2-4=2=y \Rightarrow D$ lies on $A B$ So l and $A B$ intersect at $-2,2$ *	$\{\mathrm{A} 1 \mathrm{cso}\}$ (3)
c	$\text { Midpoint of } A B=\left(\frac{-5+4}{2}, \frac{3(+0)}{2}\right)=\left(-\frac{1}{2}, \frac{3}{2}\right)$	B1 (M1 on ePen)
	$\neq(-2,2)$ So not perpendicular bisector of $A B$ *	$\begin{gathered} \text { B1 (A1 } \\ \text { on ePen) } \end{gathered}$
		cso (2)
ALT	$B D=\sqrt{(4--2)^{2}+(0-2)^{2}}(=\sqrt{40})$ or $A D=\sqrt{(-5--2)^{2}+(3-2)^{2}}(=\sqrt{10})$	M1
	$B D=\sqrt{40}(=2 \sqrt{10}) \quad \text { and } \quad A D=\sqrt{10}$ $B D \neq A D$ so not the perpendicular bisector	Alcso (2)

Part (a)	Mark	Additional Guidance
	M1	For correctly finding the gradient of $A B$, need not be simplified.
	M1	For finding the negative reciprocal of their gradient of $A B$, need not be simplified.
	M1	For a fully correct method using their negative reciprocal to find the equation of the straight line. Allow use of their $-\frac{1}{"-\frac{1}{3} "}$ which can be unsimplified or processed incorrectly, but must follow from a clear attempt to have found the negative reciprocal of their gradient for $A B$. If $y=m x+c$ is used, there must be a fully correct substitution and a fully correct rearrangement to find c
	A1	For $3 x-y+8=0$ or $-3 x+y-8=0$ oe so long as integer coefficients and $=0$.
(b)	M1	For writing the equation of $A B$, the equation need not be simplified, but must be fully correct.
	M1	For an attempt to solve their equations simultaneously, allow one processing error. Must eliminate one variable and arrive at a value for x or y.
	$\begin{gathered} \text { A1 } \\ \text { cso } \end{gathered}$	For obtaining the required result, no errors.
	ALT	Final 2 marks
	M1	For writing the equation of $A B$, the equation need not be simplified, but must be fully correct.
	M1	For a fully correct substitution of $(-2,2)$ into a correct equation for $A B$ to show that D lies on $A B$ OR a fully correct substitution of $(-2,2)$ into their equation for line l
	$\underset{\text { cso }}{\substack{\text { A1 }}}$	For a fully correct substitution of $(-2,2)$ into a correct equation for $A B$ to show that D lies on l AND a fully correct substitution of $(-2,2)$ into a correct equation for line l to show that D lies on l. An appropriate (minimal) conclusion must also be written, this can be as simple as \# or 'shown'. No errors.
(c)	$\begin{gathered} \hline \text { B1 (M1 } \\ \text { on } \\ \text { ePen) } \\ \hline \end{gathered}$	For either coordinate of the midpoint correct
	$\begin{gathered} \hline \text { B1 (A1 } \\ \text { on } \\ \text { ePen) } \\ \text { cso } \\ \hline \end{gathered}$	For both coordinates correct and an appropriate (minimal) conclusion, which must be correct, can be as simple as \# or 'shown'.
ALT	M1	For a correct method to calculate $A D$ or $B D$
	$\begin{gathered} \text { A1 } \\ \text { cso }^{*} \\ \hline \end{gathered}$	For correct values for $A D$ and $B D$, accept decimals and a (minimal) conclusion, can be as simple as \# or 'shown'.
(d)	M1	For the correct method to calculate BD (May be seen in (c))
	M1	For the correct method to calculate $\mathrm{C} D$
	ddM1	$\operatorname{For}(\tan \angle A B C=) \frac{\sqrt{(-1--2)^{2}+(5-2)^{2}}}{\sqrt{(4--6)^{2}+(0-2)^{2}}}$ or $\frac{\sqrt{10}}{\sqrt{40}}$ allow their $B D$ and $C D$. Dependent on the previous 2 method marks.
	A1	$\text { For }(\tan \angle A B C)=\frac{1}{2}$
If you see a method using the gradient of BC and $\tan (A-B)$ - PLEASE SEND TO REVIEW		

ALT 1	M1	Correct method to calculate one of the required lengths
	M1	Correct method to calculate all of the required lengths
	ddM1	Correct substitution into the cosine rule to give the expression shown, allow use of their lengths. Must obtain a correct expression for $\cos A B C=$, using their values. Dependent on the previous 2 method marks.
	A1	For $(\tan \angle A B C)=\frac{1}{2}$

Because of the wording of the question, in not specifically asking for an exact value, we are going to allow a range for the value of $\tan \angle A B C$ as follows: $\quad 0.49989 \leq \tan \angle A B C \leq \frac{1}{2}$
If you see the candidate using the ratio for a right angled triangle - but they are using the wrong pairing of lengths, (perhaps $A B, B C$ or $A C$) then this is to be marked using the main scheme, and is unlikely to be awarded any marks unless they have correctly calculated $B D$ or $C D$.

To be clear - If the candidate states correct values for $A B, B C$ or $A C$ but goes onto to use a tan ratio this cannot be awarded any marks using the ALT mark scheme, because they are not using the correct cosine rule and with the tan ratio they should be using at least one of the correct sides, $B D$ or $C D$.

If you see a clear attempt to use the cosine rule, please use this ALT marking scheme.
A special case is when the candidate has not made it clear which route they were intending to take tan ratio (right angled triangle ratio) or cosine rule. If they have all lengths stated correctly, they could be awarded M1 M1 using either scheme.

Further ALTS		If you see a valid method, leading to a fully correct exact value for $\tan A B C$, please award 4 marks. If the value for $\tan A B C$ is incorrect or approximate and there is some partially correct working, PLEASE SEND TO REVIEW. Allow angle $A B C$ to be denoted by any letter.
		 For reference $\begin{array}{lll} B D=\sqrt{40}(=2 \sqrt{10}) & A D=\sqrt{10} \quad A B=\sqrt{90}=3 \sqrt{10} & B C=\sqrt{50}=5 \sqrt{2} \\ \sin A B C=\frac{\sqrt{5}}{5} & \cos A B C=\frac{2 \sqrt{5}}{5} & \end{array}$

Question number	Scheme	Marks
3 a	$\frac{a}{-2}=4 \Rightarrow a=-8$	M1 A1 (2)
b	$x=\frac{1}{2}$	B1 (1)
c (i)	$\left(\frac{3}{-"-8^{\prime}}, 0\right)\left(=\left(\frac{3}{8}, 0\right)\right)$	B1 ft
c (ii)	$(0,3)$	B1 (2)
d	Asymptote drawn at $y=4$. The asymptote must either be clearly labelled with its equation or pass through the y axis with 4 clearly labelled. Asymptote with equation drawn at $x=\frac{1}{2}$ The asymptote must either be	B1
	clearly labelled with its equation or pass through the x axis with $\frac{1}{2}$ labelled.	B1 ft
	Correct curve drawn with two branches	B1 ft
	" $\frac{3}{8}$ " and " 3 " labelled on x and y axes respectively	B1 ft (4)

Total 9 marks

Part (a)	Mark	Additional Guidance
	M1	For $\frac{a}{-2}=4$
	A1	For $a=-8$
	Note: it is acceptable if a candidate uses a suitably large value for x and deduces the correct value for a. M1 A1	
(b)	B1	For $x=\frac{1}{2}$
(c)(i)	B1 ft	$\operatorname{For}\left(\frac{3}{-"-8^{\prime \prime}}, 0\right)\left(=\left(\frac{3}{8}, 0\right)\right)$ ft their value from (a). Allow omission of brackets. This mark is awarded for the point at which you see $\left(\frac{3}{- \text { their } a}, 0\right)$ May be written $x=$
(ii)	B1	For (0,3). Allow omission of brackets. May be written $y=$
If there is no labelling of (i) and (ii), it must be unambiguously indicated which coordinate crosses the y axis and which crosses the x axis. If any doubt, do not award the marks.		
(d)	B1	For asymptote with equation drawn at $y=4$. The line must be labelled with the equation or must clearly pass through the y-axis labelled as 4. There must be at least one branch of the curve present, which must not cross or bend back from the asymptote.
	B1 ft	For asymptote with equation drawn at $x=\frac{1}{2}$, ft their answer from part b The line must be labelled with the equation or must clearly pass through the x-axis labelled as 0.5 . There must be at least one branch of the curve drawn, which must not cross or bend back from the asymptote.

$\frac{x-1 \sqrt{x^{3}+p x^{2}+q x+6}}{x^{3}-x^{2}}$	\dot{x}^{2}	
(p+1) ${ }^{2}+q x$		
(p+1) $x^{2}-(p+1) x$	(p+1) x	
$(q+p+1) x+6$	$q+p+1$	
$\frac{(q+p+1) x-(q+p+1)}{} q$		
$6+q+p+1$	-	
remainder $6+q+p+1=0$		
$p+q=-7$		
$x + 1 \longdiv { x ^ { 3 } + p x ^ { 2 } + q x + 6 }$	x^{2}	
$\frac{x^{3}+x^{2}}{}$		
$(p-1) x^{2}+q x$	$(p-1) x$	
$(p-1) x^{2}+(p-1) x$		
(q-p+1) 1 (+6	${ }^{(p-1) x}$	
$\frac{(q-p+1) x+(q-p+1)}{6 ; q+p-1)} q$	$q-p+1$	
remainder $\quad 6-q+p-1=8$		
$p-q=3$		

Part	Mark	Additional Guidance
(a)	M1	For a fully correct substitution of either 1 into $\mathrm{f}(x)=0$ OR -1 into $\mathrm{f}(x)=8$ as shown. The bracketing for the substitution of -1 must be correct, but may be recovered later. A correct equation can imply this mark.
	A1	For a fully correct substitution of 1 into $\mathrm{f}(x)=0$ AND -1 into $\mathrm{f}(x)=8$ as shown. The bracketing for the substitution of -1 must be correct, but may be recovered later. A correct equation can imply this mark.
	A1	For $p+q=-7$ and $p-q=3$ oe The equations do not need to be simplified.
	Note, if students choose to do long division, to be comparable with the main scheme, this must be fully correct and complete, to allow them to arrive at the correct equations to be awarded the method mark. See the example included. The accuracy marks can be then awarded as stated above. There is an example under the main mark scheme. If in any doubt, please send to review.	
	M1	For an attempt to solve their equations simultaneously, allow one processing error. Must eliminate one variable and arrive at a value for p or q.
	$\begin{aligned} & \text { A1 } \\ & \text { cso } \\ & \hline \end{aligned}$	For $p=-2$
	$\begin{array}{\|c} \hline \text { B1 (A1 } \\ \text { on } \\ \text { ePen) } \end{array}$	$q=-5$ Note this is an independent accuracy mark, allowing students to use the given value of p to find q.
(b)	M1	For $(x-1)\left(x^{2} \pm A x-6\right)=0 \quad A \neq 0$ This mark can be awarded for sight of $x^{2} \pm A x-6 \quad A \neq 0$
	M1	For $[(x-1)](x+2)(x-3)=0$ For this mark, for the correct or ft their quadratic: Allow any minimally acceptable attempt to solve the quadratic, by factorising, completing the square or use of the quadratic formula - see general guidance, leading to two values of x in addition to $x=1$. It is not necessary to see $=0$.
	A1	For $x=1,-2,3$ If 3 three correct solutions appear with no working M1 M1 A1 as the question has not stated show working or solve algebraically.

Question number	Scheme	Marks
5 a	$\left(y=1+\frac{k}{2} x \Rightarrow\right) \text { eg } k x^{2}-x\left(1+\frac{k}{2} x\right)+(k+1) x-1=0 \text { or eg } \frac{k x^{2}+(k+1) x-1}{x}=\frac{k}{2} x+1$	M1
	$k x^{2}-x-\frac{k}{2} x^{2}+k x+x-1=0 \quad$ or $\quad 2 k x^{2}+2(k+1) x-2=k x^{2}+2 x \quad$ oe	M1
	$k x^{2}+2 k x-2=0 \text { oе }$	A1
	$\left(b^{2}-4 a c=0 \Rightarrow\right)(" 2 k ")^{2}-4(" k ")("-2 ")=0 \text { or }(x+1)^{2}=1+\frac{2}{k}$	M1
	$4 k(k+2)=0$ or $k+2=0$ or $1+\frac{2}{k}=0$	dM1
	$k=-2$	$\begin{aligned} & \text { A1 } \\ & \text { (6) } \end{aligned}$
ALT	Realises if the line intersects the curve only once, it is a tangent at point A - final 3 marks	
Final 3 marks	$y=\frac{k x^{2}+(k+1) x-1}{x}=\left(k x+k+1-\frac{1}{x}\right) \quad \text { and } \quad\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{k}{2}$	M1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) k(+0)+\frac{1}{x^{2}}=\frac{k}{2} \Rightarrow x^{2}=-\frac{2}{k}$	
	$k\left(-\frac{2}{k}\right)+2 k \sqrt{-\frac{2}{k}}-2=0 \Rightarrow 2 k \sqrt{-\frac{2}{k}}=4 \Rightarrow 4 k^{2}\left(-\frac{2}{k}\right)=16 \Rightarrow-8 k=16$	dM1
	$k=-2$	A1
b	When $k=-2-2 x^{2}-4 x-2=0$ or $(x+1)^{2}=1+\frac{2}{-2}$	
	$(x+1)^{2}=0$	M1
	$x=-1 \Rightarrow y=2$ So (-1,2)	$\begin{aligned} & \text { A1 } \\ & \text { (2) } \\ & \hline \end{aligned}$
Total 8 marks		

Part (a)	Mark	Additional Guidance
	M1	For correctly substituting $y=1+\frac{k}{2} x$ into $k x^{2}-x y+(k+1) x=1$
	M1	For a complete expansion of $x\left(1+\frac{k}{2} x\right)$ and $(k+1) x$. Allow one error in the expansion. For multiplying the equation throughout by $2 x$ or $-2 x, x$ or $-x$ to eliminate any algebraic denominators, allow one processing error. There must be an attempt to simplify follow either of these steps. If any other manipulation is seen, full marks can be awarded if the steps lead to a correct equation or a three term quadratic with one processing error made. If there is relevant work, not leading to either of these, please send to review.
	A1	For a correct three term quadratic. oe
	M1	For clear and correct use of $b^{2}-4 a c=0$ or a full and correct completing the square process, using their expressions for a, b and $c . a, b, c \neq 0$
	dM1	For factorising or any attempt to solve their quadratic in k, or setting their $1+\frac{2}{k}=0$ See general guidance for acceptable attempt to solve a quadratic. For the case of a 2TQ with terms in k and k^{2} (which a fully correct solution delivers), we need to see a correct factorisation in the case of this mark or, as the candidate is told k is no zero, they may also correctly divide throughout by k. Dependent on the previous method mark. Allow this mark to be implied if k is correct. Otherwise, the method must be shown to gain this mark.
	A1	$k=-2$, must dismiss $k=0$, if found.
ALT	States and use the gradient of \boldsymbol{C} is $\frac{k}{2}$.	
	M1	As main scheme.
	M1	As main scheme.
	A1	As main scheme.
	M1	Differentiates C and puts the gradient $=\frac{k}{2}$ to get an equation of the form $m k+\frac{n}{x^{2}}=\frac{k}{2} \quad m, n \neq 0$ (doesn't need to be simplified) but must lead to an expression of the form $x^{2}=-\frac{l}{k} \quad l \neq 0$
	dM1	Substitutes their expression for x^{2} into their quadratic equation and rearranges to give an expression of the form $-p k=q$ or $p k=-q \quad p>0, k>0$
	A1	$k=-2$ (must be the only solution given).
(b)	M1	For correct substitution of their value of k into their 3 term quadratic from part a and a minimally acceptable attempt to solve for x. See general guidance.
	A1	For ($-1,2$) or $x=-1$ and $y=2$

| Question
 number | Scheme | Marks |
| :---: | :---: | :---: | :---: |
| 6 a | $p=2 \quad q=\frac{3}{8}$ | |
| b | $(2)\left(1+\frac{1}{3}\left(" \frac{3}{8} " x\right)+\frac{3\left(-\frac{2}{3}\right)}{2!}\left(" \frac{3}{8} " x\right)^{2}\right]=2+\frac{1}{4} x-\frac{1}{32} x^{2}$ | B1 B1
 (2) |
| c | $\left(\sqrt[3]{9}=\sqrt[3]{8+1} \Rightarrow x=\frac{1}{3}\right)$ | |
| So " $2 "+" \frac{1}{4} " \times " \frac{1}{3} "-" \frac{1}{32} " \times\left(" \frac{1}{3} n\right)^{2}\left(=\frac{576+24-1}{288}\right)=\frac{599}{288} *$ | M1 A1ft
 A1
 (3) | |

Part (a)	Mark	Additional Guidance
	B1	For $p=2$ or $q=\frac{3}{8}$ condone $8^{\frac{1}{3}}$
	B1	For $p=2$ and $q=\frac{3}{8}$ condone $8^{\frac{1}{3}}$
(b)	M1	For an attempt to expand $(1+q x)^{\frac{1}{3}}$ with their value of q up to the term in x^{2} It is not necessary to see p at this stage. The definition of an attempt is as follows: - The first term must be 1 - The next term must be correct for their value of q - The powers of $q x$ must be correct eg $(q x)^{2}$ - The denominators must be correct Simplification not required. Do not allow missing brackets unless recovered later - this is a general point of marking. Ignore any terms with powers higher than 2.
	A1ft	For both algebraic terms fully correct and unsimplified in the expansion of $(1+q x)^{\frac{1}{3}}$ for their value of q. It is not necessary to see p at this point. Ignore any terms with powers higher than 2 .
	A1	For all 3 terms correct, all simplified. Ignore any terms with powers higher than 2
If there are any other methods used - send this to review please.		
(c)	M1	For correct substitution of $x=\frac{1}{3}$ into their expansion, which must have at least 2 terms, including a term in x^{2}
	A1cso*	Obtains the given result

Part (a)	Mark	Additional Guidance
	B2	For all 3 values in the table correct to 2 d.p. Allow 3.0 or 3.00 for " 3 " (B1 for 2 values)
(b)	B1 ft	For all of the points plotted within half a square, allow use of their values. Points must be checked carefully, including using the zoom tool on ePen if necessary.
	B1 ft	For all of their points joined with a smooth curve. The curve must pass through each of their points to within half a square. Be cautious to not award this mark if straight lines are drawn between the points plotted.
(c)	M1	For use of $\log _{a} x^{k}=k \log _{a} x$ and an attempt to rearrange. Accept an equation of the form $\pm 3 \log _{2}(2 x+2)= \pm x \pm 3 \quad \text { or } \quad \pm \log _{2}(2 x+2)=\frac{ \pm x}{3} \pm 1$
	M1	For correctly dividing by 3 (if not already done) and correct use of $\log _{b} a=\frac{\log _{0.5}(a)}{\log _{0.5}(b)}$ with their equation to get an expression of the form $\frac{\log _{0.5}(2 x+2)}{\log _{0.5} 2}= \pm \frac{x}{3} \pm 1$ or For correctly dividing by 3 (if not done) and correctly converting their equation to exponential form get an equation of the form $2 x+2=2^{+\frac{x}{3}+1}$ or $\frac{1}{2 x+2}=2^{+\frac{x}{3}+1}$
	M1	For reaching an equation of the form $2 x+2=0.5^{-\frac{x}{3}+1}$
	A1	For $2 x+4=0.5^{\left(\frac{x}{3}+1\right)}+2$
	M1	For $y=2 x+4$ drawn. Correct line drawn can imply any of the 4 previous marks. Allow any line of $y=2 x+c$ to gain this mark. If the candidate draws any line where \boldsymbol{c} is other than 4 , they must have gained the previous 3 method marks.
	A1	For $x=-0.8 /-0.7$
ALT	M1	For use of $\log _{a} x^{k}=k \log _{a} x$ and an attempt to rearrange. Accept an equation of the form $\pm 3 \log _{2}(2 x+2)= \pm x \pm 3 \quad \text { or } \quad \pm \log _{2}(2 x+2)=\frac{ \pm x}{3} \pm 1$
	M1	For correctly dividing by 3 (if not already done) and correct use of $\log _{b} a=\frac{\log _{0.5}(a)}{\log _{0.5}(b)}$ with their equation to get an expression of the form $\frac{\log _{0.5}(2 x+2)}{\log _{0.5} 2}= \pm \frac{x}{3} \pm 1$
	M1	For an attempt to rearrange and converting to \log form to reach $\log _{0.5}(y \pm 2)= \pm \frac{x}{3} \pm 1 \Rightarrow \log _{0.5}(y \pm 2)= \pm \log _{0.5}(2 x+2)$
	A1	For the correct equation show.
	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	As main scheme.

Question number	Scheme	Marks
8 a	$(\text { Area })=2 x y+\frac{1}{2} x^{2}\left(\frac{1}{2}\right)\left(=2 x y+\frac{1}{4} x^{2}=50\right)$	M1
	So $y=\frac{50-\frac{1}{4} x^{2}}{2 x}\left(=\frac{25}{x}-\frac{1}{8} x\right)$	$\mathrm{dM} 1$
	$P=2 x+4 y+\frac{1}{2} x=\frac{5}{2} x+4 y$	M1
	$=\frac{5}{2} x+4\left(\frac{25}{x}-\frac{1}{8} x\right) \Rightarrow P=2 x+\frac{100}{x} *$	M1 A1 cso (5)
b	$\left(\frac{\mathrm{d} P}{\mathrm{~d} x}=\right) 2-\frac{100}{x^{2}}$	M1 A1
	$\left(\frac{\mathrm{d} P}{\mathrm{~d} x}=0 \Rightarrow\right) 2-\frac{100}{x^{2}}=0 \Rightarrow x^{2}=50 \Rightarrow x=5 \sqrt{2} \mathrm{oe}$	M1 A1
	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}=\frac{200}{x^{3}} \quad$ When $x=5 \sqrt{2} \quad \frac{\mathrm{~d}^{2} P}{\mathrm{~d} x^{2}}=\frac{2}{5} \sqrt{2}(=0.565 \ldots .)>$. therefore minimum	M1 A1 (6)
c	$P=2(5 \sqrt{2})+\frac{100}{5 \sqrt{2}}=20 \sqrt{2}$	M1 A1 (2)

Part (a)	Mark	Additional Guidance
	M1	For writing an expression (may not be simplified) for the area in terms of x and y. Allow any expression of the form $x y+x y+a x^{2}$ oe where $a>0$ This mark can be implied by an equation for A with the required $x y+x y+a x^{2}$ oe where $a>0$
	dM1	For placing their expression for area $=50$ and correctly rearranging to make y the subject. The expression for y does not need to be simplified.
	M1	For correctly writing an equation for perimeter in terms of x and y (may not be simplified). There must be a $P=$, though this may be seen later in their work. As long as $P=$ appears by the end of the work, this mark can be awarded. Perimeter $=$ instead of $P=$ is acceptable for this mark
	M1	For correct substitution of their expression for y into their expression for \boldsymbol{P} or the Perimeter to reach an expression for \boldsymbol{P} which must be in terms of \boldsymbol{x} only. Simplification not required.
	A1*cso	Obtains the given result with no errors. Perimeter $=$ instead of $P=$ is NOT acceptable for this mark
For this question, if we are confident any second solution provided is a re-start and the work the candidate wishes us to consider, this is the work can be marked.		
(b)	M1	For an attempt to differentiate the given expression for P wrt x It is not necessary to see $\frac{\mathrm{d} P}{\mathrm{~d} x}=$ Award this mark for any expression of the form $2 \pm \frac{b}{x^{2}}, \quad b \neq 0$ oe
	A1	For $2-\frac{100}{x^{2}}$ oe
	M1	For placing their expression for $\frac{\mathrm{d} P}{\mathrm{~d} x}=0$ which must have a term in x^{2}, a correct rearrangement to solve the equation formed and an attempt to find a value for x
	A1	For $x=5 \sqrt{2}$ oe ignore $x=-5 \sqrt{2}$
	M1	For $\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}= \pm \frac{c}{x^{3}} \quad c \neq 0$
	A1	For substituting in a correct value for x, evaluating correctly, stating >0 and drawing a conclusion. This can be as simple as \# or shown. Students may also argue that the second derivative has to be positive as x is positive. This must be a convincing argument that since x is positive the derivative is positive and then a valid minimal conclusion. Do not award this mark if a negative value of x is used and it is not discounted at some point.
	$\begin{gathered} \hline \text { ALT } \\ \text { M1 } \end{gathered}$	Final 2 marks For substitution of valid values for x either side of their value of x found for the minimum value into $\frac{\mathrm{d} P}{\mathrm{~d} x}=2 \pm \frac{b}{x^{2}}, \quad b \neq 0$
	A1	For fully correct substitution of their values for x into a correct expression for a first derivative, correctly evaluating or arguing the sign of the derivative and a conclusion drawn. Do not award this mark if a negative value of x is used and it is not discounted at some point.
(c)	M1	For substitution of their value for $x=5 \sqrt{2}$ oe into the given expression for P
	A1	For $20 \sqrt{2}$

Question number	Scheme	Marks
9	$\left(\mathrm{e}^{2 y}-x+2=0 \Rightarrow\right) \mathrm{e}^{2 y}=x-2 \Rightarrow 2 y=\ln (x-2) \text { or } y=\frac{1}{2} \ln (x-2)$	M1
	So $\ln (x+3)-\ln (x-2)=1$ oe	M1
	$\ln \left(\frac{x+3}{x-2}\right)=1$	M1
	$\frac{x+3}{x-2}=\mathrm{e}$	M1
	$x+3=x \mathrm{e}-2 \mathrm{e} \Rightarrow 3+2 \mathrm{e}=x \mathrm{e}-x$	ddddM1
	$3+2 \mathrm{e}=x(\mathrm{e}-1) \Rightarrow x=\frac{3+2 \mathrm{e}}{\mathrm{e}-1}=4.91$	A1
	$y=\frac{1}{2} \ln \left(\frac{3+2 \mathrm{e}}{\mathrm{e}-1}-2\right)=0.53$	M1 A1 (8)
ALT 1	$\mathrm{e}^{2 y}+2=x \Rightarrow \ln \left(\mathrm{e}^{2 y}+2+3\right)-2 y-1=0$	M1
	$\ln \left(\mathrm{e}^{2 y}+5\right)=2 y+1 \Rightarrow \mathrm{e}^{2 y+1}=\mathrm{e}^{2 y}+5$	M1
	e. $\mathrm{e}^{2 y}=\mathrm{e}^{2 y}+5$	M1
	$\mathrm{e}^{2 y}(\mathrm{e}-1)=5$	M1
	$2 y=\ln \left(\frac{5}{\mathrm{e}-1}\right) \Rightarrow y=\frac{1}{2} \ln \left(\frac{5}{\mathrm{e}-1}\right)=0.53$	$\begin{aligned} & \text { ddddM1 } \\ & \text { A1 } \end{aligned}$
	$x=\mathrm{e}^{\ln \left(\frac{5}{\mathrm{e}-1}\right)}+2 \text { or } \quad x=\left(\frac{5}{\mathrm{e}-1}\right)+2=4.91$	M1 A1 (8)
ALT 2	$\ln (x+3)=2 y+1 \Rightarrow x=e^{2 y+1}-3$	M1
	$\mathrm{e}^{2 y}-\left(e^{2 y+1}-3\right)+2=0$	M1
	$\mathrm{e}^{2 y}-\mathrm{e}^{2 y+1}+5=0 \Rightarrow \mathrm{e}^{2 y}-\mathrm{e} . \mathrm{e}^{2 y}+5=0$	M1
	$(1-e) e^{2 y}=-5$	M1
	$2 y=\ln \left(\frac{-5}{1-\mathrm{e}}\right) \Rightarrow y=\frac{1}{2} \ln \left(\frac{-5}{1-\mathrm{e}}\right)=0.53$	ddddM1 A1
	Final 2 marks as ALT1	$\begin{gathered} \text { M1 A1 } \\ (8) \\ \hline \end{gathered}$
ALT 3	$2 y=\ln (x+3)-1 \quad \mathrm{e}^{2 y}=\mathrm{e}^{\ln (x+3)-1}$	M1 M1
	$\mathrm{e}^{2 y}=\frac{x+3}{\mathrm{e}} \text { oe }$	M1
	$x-2=\frac{x+3}{\mathrm{e}} \text { oe }$	M1
	$x=\frac{3+2 \mathrm{e}}{\mathrm{e}-1}=4.91$	dddM1
	Final 2 marks as main scheme	
There are potentially a large number of approaches to this question. Use the following general principles: Although the first 4 M marks are not dependent on each other, there must be sufficient work completed in the previous method mark to allow the step that is stated in the additional guidance to be completed. Look carefully at the relevant Practice item in OLS. Award full marks for correct values of x and y. If in any doubt or different methods are used not leading to correct answers, you MUST send this to review please.		
		18 marks

Mark	Additional Guidance
M1	For correctly rearranging and taking logs to obtain $2 y=\ln (x-2)$ or $y=\frac{1}{2} \ln (x-2)$
M1	For correct substitution of their expression for y or $2 y$ into $\ln (x+3)-2 y-1=0$
M1	For correct use of $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$ with their equation.
M1	For correctly converting their log equation to exponential form.
ddddM1	For correctly multiplying throughout to eliminate any denominators and collecting x terms on one side of the equation and making x subject. Dependent on all previous method marks having been awarded and the rearrangement of their equation must be fully correct.
A1	For $x=4.91$ or better e.g. exact form (Calc gives: $4.90988 \ldots$..) accept any answer which rounds to 4.91
M1	For correct substitution of their value for x into a correct equation leading to a value for y
A1	For $y=0.53$ Accept any answer which rounds 0.53 (calculator gives: $0.5340565 \ldots$)
ALT 1	
M1	Correctly rearranging to make x the subject and correctly substituting into $\ln (x+3)-2 y-1=0$
M1	A correct rearrangement of their equation in y to give an equation which then allows them to correctly convert their log equation to exponential form.
M1	Correctly applying the multiplication law for powers
M1	Correctly rearranging their equation and correctly factorising $\mathrm{e}^{2 y}$
ddddM1	For dividing by $e-1$ and converting to log form to make y the subject. Dependent on all previous method marks having been awarded and the rearrangement of their equation must be fully correct.
A1	For $y=0.53$ or better e.g. exact form (Calc gives: $0.5340565 \ldots$), accept any answer which rounds to 0.53
M1	For correct substitution of y into a correct equation leading to a value for x
A1	For $x=4.91$ Accept any answer which rounds to 4.91 (Calc gives: $4.90988 \ldots$..)
ALT 2	
M1	Correctly rearranges and converts to exponential form to obtain $x=\mathrm{e}^{2 y+1}-3$
M1	A correct substitution of their x into $\mathrm{e}^{2 y}-x+2=0$
M1	Correct use of the multiplication law for powers
M1	Correct rearrangement of their equation and factorisation of $\mathrm{e}^{2 y}$
ddddM1	For dividing by $\mathrm{e}-1$ and converting to log form to make y the subject. Dependent on all previous method marks having been awarded and the rearrangement of their equation must be fully correct.
A1	For $y=0.53$ or better e.g. exact form (Calc gives: $0.5340565 \ldots$..), accept any answer which rounds to 0.53
Final 2 marks	As ALT1
ALT 3	
M1	Correctly rearranges to make $2 y$ the subject $2 y=\ln (x+3)-1$
M1	Correctly raises each side to be a power of e $\mathrm{e}^{2 y}=\mathrm{e}^{\ln (x+3)-1}$
M1	Correct use of the multiplication rule for powers and simplification to give $\mathrm{e}^{2 y}=\frac{x+3}{\mathrm{e}}$
M1	Correct substitution of their expression for $\mathrm{e}^{2 y}$ (usually equating the two equations)
ddddM1	For correctly multiplying throughout to eliminate any denominators and collecting x terms on one side of the equation and making x subject. Dependent on all previous method marks having been awarded and the rearrangement of their equation must be fully correct.
A1	For $x=4.91$ or better e.g. exact form (Calc gives: 4.90988 ...) accept any answer which rounds to 4.91
Final 2 marks	As main scheme

Part (a)	Mark	Additional Guidance
	M1	For correctly rearranging to get $x^{2}=y-1$ and correctly substituting to get an equation of the form $a y^{2}+b y+c=0 a, b, c \neq 0$ or For correctly substituting $y=x^{2}+1$, an attempt to expand $\left(x^{2}+1\right)^{2}$ and attaining an equation of the form $d x^{4}+e x^{2}+f=0 \quad d, e, f \neq 0$
	M1	For a complete attempt to solve either $a y^{2}+b y+c$ or $d x^{4}+e x^{2}+f$ by any valid method - see general guidance for definition of minimally acceptable attempt.
	M1	For correctly solving their quadratic equation in y or quartic equation in x and for obtaining a value(s) for x^{2} or x. Award this mark if the candidate does not state or dismisses a solution where x^{2} is negative.
	A1	For stating the x coordinate of A is $-\sqrt{2}$ and the x coordinate of B is $\sqrt{2}$ Decimal equivalent allowed.
(b)	M1	For $\pi \int_{-\sqrt{2^{\prime \prime}}}^{-\sqrt{2} "}\left(11-x^{2}\right)-\left(x^{2}+1\right)^{2} \mathrm{~d} x$ or $\pi \int_{"-\sqrt{2}}^{1-\sqrt{2 "}}\left(x^{2}+1\right)^{2}-\left(11-x^{2}\right) \mathrm{d} x$ Allow use of their limits from part a.
	A1ft	For expanding the bracket and simplifying to give $\pi \int_{-\sqrt{2}}^{\sqrt{2}}\left(-x^{4}-3 x^{2}+10\right) \mathrm{d} x$ The ft is only for use of their limits from part a.
	M1	For correct integration of their expressions. There must be at least 3 terms overall and there must be a term in x^{4} or y^{4}. It is not necessary for ${ }_{\pi}$ or limits to be present for this mark.
	M1	For correct substitution of their limits seen into their changed expression. Each of the limits needs to be substituted into the expression correctly at least once. Allow a fully correct final answer to imply this mark. Brackets must be correct but can be recovered later.
	A1	For awrt 63.98 (Calc: $63.9775 \ldots$) If a negative value is found and changed at the end to a positive value, this final A mark cannot be awarded.
ALT	M1	For $\pi \int_{"-\sqrt{2} "}^{-\sqrt{2} "}\left(11-x^{2}\right) \mathrm{d} x-\pi \int_{--\sqrt{2} "}^{n \sqrt{2} "}\left(x^{2}+1\right)^{2} \mathrm{~d} x$ or $\pi \int_{"-\sqrt{2} "}^{-\sqrt{2} "}\left(x^{2}+1\right)^{2} \mathrm{~d} x-\pi \int_{"-\sqrt{2}{ }^{\prime \prime}}^{-\sqrt{2^{\prime \prime}}}\left(11-x^{2}\right) \mathrm{d} x \quad$ Allow use of their limits from part a.
	A1ft	For expanding the bracket and simplifying $\pi \int_{"-\sqrt{2} "}^{-\sqrt{2} "}\left(11-x^{2}\right) \mathrm{d} x-\pi \int_{-\sqrt{2} "}^{-\sqrt{2} "}\left(x^{4}+2 x^{2}+1\right) \mathrm{d} x$ The ft is only for use of their limits from part a.
	M1	For correct integration of their expressions. There must be at least 3 terms overall and there must be a term in x^{4} or y^{4}. It is not necessary for ${ }_{\pi}$ or limits to be present for this mark.
	M1	For correct substitution of their limits seen into their changed expression. Each of the limits needs to be substituted into each expression correctly at least once. Allow a fully correct final answer, with correct integration shown, to imply this mark. Brackets must be correct but can be recovered later.
	A1	For awrt 63.98 (Calc: $63.9775 \ldots$...) If a negative value is found and changed at the end to a positive value, this final A mark cannot be awarded.

Question number	Scheme	Marks
11 aiii	$(\overrightarrow{A N}=) \overrightarrow{A O}+\overrightarrow{O N}$ or $(\overrightarrow{A N}=) \overrightarrow{A O}+\frac{3}{4} \overrightarrow{O B}=-\mathbf{a}+\frac{3}{4} \mathbf{b}$	M1 A1
	$(\overrightarrow{B M}=\overrightarrow{B O}+\overrightarrow{O M}=)-\mathbf{b}+\frac{1}{2} \mathbf{a}$	B1 (A1 on ePen) (3)
b	$(\overrightarrow{A X}=\lambda(\pm($ their $\overrightarrow{A N})))=\lambda\left(\pm{ }^{\prime \prime}-\mathbf{a}+\frac{3}{4} \mathbf{b}{ }^{\prime \prime}\right)$	B1 ft
	$(\overrightarrow{A X}=\overrightarrow{A M}+\mu(\pm(\text { their } \overrightarrow{M B}))=)-\frac{1}{2} \mathbf{a}+\mu\left(\pm "-\frac{1}{2} \mathbf{a}+\mathbf{b}^{\prime \prime}\right)$	M1
	Equating components gives $-\lambda=-\frac{1}{2}-\frac{1}{2} \mu$	M1
	and $\frac{3}{4} \lambda=\mu$	M1
	$-\lambda=-\frac{1}{2}-\frac{1}{2}\left(\frac{3}{4} \lambda\right) \Rightarrow \lambda=\frac{4}{5} \text { or } \mu=\frac{3}{5}$	ddM1 A1
	So $A X: X N=4: 1$	A1 (7)
ALT	$(\overrightarrow{A X}=\overrightarrow{A B}+\overrightarrow{B N}+\lambda(\pm(\text { their } \overrightarrow{A N})))=\mathbf{b}-\mathbf{a}-\frac{1}{4} \mathbf{b}+\lambda\left(\pm "-\mathbf{a}+\frac{3}{4} \mathbf{b}^{\prime \prime}\right)$	B1ft
	$(\overrightarrow{A X}=\overrightarrow{A M}+\mu(\pm(\text { their } \overrightarrow{M B}))=)-\frac{1}{2} \mathbf{a}+\mu\left(\pm "-\frac{1}{2} \mathbf{a}+\mathbf{b} \mathbf{b}^{\prime}\right)$	M1
	Equating components gives $-\frac{1}{2}-\frac{1}{2} \mu=-1+\lambda$	M1
	and $\quad \mu=\frac{3}{4}-\frac{3}{4} \lambda$	M1
	$\mu=\frac{3}{4}-\frac{3}{4}\left(\frac{1}{2}-\frac{1}{2} \mu\right) \Rightarrow \lambda=\frac{1}{5} \text { or } \mu=\frac{3}{5}$	ddM1 A1
	So $A X: X N=4: 1$	A1 (7)
General principles for marking part b		
B1 ft states a valid vector, with a parameter, that could be used in a solution to find the ratio required.		
M1 states required. M1 This vectors,	a second valid vector path, with a second distinct parameter that could be u This must be a distinct route, different to that used already, not travelli mark is obtained by correctly equating their components for \mathbf{a}. They must h ong two distinct paths and two distinct parameters. These do not need	ratio same line. ant λ and μ
M1 This vectors, ddM1 For solving si	mark is obtained by correctly equating their components for \mathbf{b}. They must h ong two distinct paths and two distinct parameters. These do not need an attempt to solve their simultaneous equations. There can be errors, but it multaneous equations to arrive at a value for λ or μ or their parameters.	vant λ and μ they are
Dependen A1 correct A1 correct	on both previous method marks. value for one of their parameters ratio	

\(\left.$$
\begin{array}{|c|c|l|}\hline \text { Part } & \text { Mark } & \text { Additional Guidance } \\
\hline \begin{array}{c}\text { (a) } \\
\text { (i) }\end{array}
$$ \& A1 \& For a correct vector path stated, a fully correct answer implies this mark.

\hline (ii) \& \begin{array}{c}B1-\mathbf{a}+\frac{3}{4} \mathbf{b}

(A1

ePen)\end{array} \& For-\mathbf{b}+\frac{1}{2} \mathbf{a}\end{array}\right]\)| (b) |
| :--- |
| B1 ft |

$\begin{gathered} \text { (b) } \\ \text { ALT } \end{gathered}$	B1ft	For $\overrightarrow{A X}=\overrightarrow{A B}+\overrightarrow{B N}+\lambda(\pm$ their $\overrightarrow{A N})$ written in terms of \mathbf{a} and \mathbf{b} $(\overrightarrow{A X})=\mathbf{b}-\mathbf{a}-\frac{1}{4} \mathbf{b}+\lambda\left(\pm "-\mathbf{a}+\frac{3}{4} \mathbf{b}{ }^{\prime \prime}\right)$ This may be seen embedded in working.
	M1	For e.g. $\overrightarrow{A X}=\overrightarrow{A M}+\mu \pm$ their $\overrightarrow{M B}$ written in terms of vectors \mathbf{a} and \mathbf{b} $(\overrightarrow{A X}=)-\frac{1}{2} \mathbf{a}+\mu\left(\pm "-\frac{1}{2} \mathbf{a}+\mathbf{b}^{\prime \prime}\right)$ This may be seen embedded in working. This must be a distinct route, different to that used already, not travelling along the same line.
	M1	For $-\frac{1}{2}-\frac{1}{2} \mu=-1+\lambda$ This mark is obtained by correctly equating their components for \mathbf{a}, the example given is when their equations are set up using $\overrightarrow{A X}=\overrightarrow{A B}+\overrightarrow{B N}+\lambda \overrightarrow{A N}$ and $\overrightarrow{A X}=\overrightarrow{A M}+\mu \overrightarrow{M B}$ They must have two relevant vectors, along two distinct paths and two distinct parameters. These do not need to be labelled λ and μ.
	M1	For $\mu=\frac{3}{4}-\frac{3}{4} \lambda$ This mark is obtained by correctly equating their components for \mathbf{b}, the example given is when their equations are set up using $\overrightarrow{A X}=\overrightarrow{A B}+\overrightarrow{B N}+\lambda \overrightarrow{A N}$ and $\overrightarrow{A X}=\overrightarrow{A M}+\mu \overrightarrow{M B}$ They must have two relevant vectors, along two distinct paths and two distinct parameters. These do not need to be labelled λ and μ.
	ddM1	For an attempt to solve their simultaneous equations. There can be errors, but it must be clear they are solving simultaneous equations to arrive at a value for λ or μ Dependent on both previous method marks.
	A1	There are a number of different correct answers here, depending on how they've set up their equations: For $\lambda=\frac{1}{5}$ or $\mu=\frac{3}{5}$ using $\overrightarrow{A X}=\overrightarrow{A B}+\overrightarrow{B N}+\lambda \overrightarrow{A N}$ and $\overrightarrow{A X}=\overrightarrow{A M}+\mu \overrightarrow{M B}$ For $\lambda=-\frac{1}{5}$ or $\mu=\frac{3}{5}$ using $\overrightarrow{A X}=\overrightarrow{A B}+\overrightarrow{B N}+\lambda(-\overrightarrow{A N})$ and $\overrightarrow{A X}=\overrightarrow{A M}+\mu \overrightarrow{M B}$ For $\lambda=\frac{1}{5}$ or $\mu=-\frac{3}{5}$ using $\overrightarrow{A X}=\overrightarrow{A B}+\overrightarrow{B N}+\lambda \overrightarrow{A N} \quad$ and $\quad \overrightarrow{A X}=\overrightarrow{A M}+\mu(-\overrightarrow{M B})$ For $\lambda=-\frac{1}{5}$ or $\mu=-\frac{3}{5}$ using $\overrightarrow{A X}=\overrightarrow{A B}+\overrightarrow{B N}+\lambda(-\overrightarrow{A N}) \text { and } \quad \overrightarrow{A X}=\overrightarrow{A M}+\mu(-\overrightarrow{M B})$
	A1	For $A X: X N=4: 1$

