Please check the examination details be	low before ente	ering your candidate information
Candidate surname		Other names
Centre Number Candidate N Pearson Edexcel Inter		al GCSE
Time 2 hours	Paper reference	4PM1/01
Further Pure Mat	hema	tics
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	The <i>n</i> th	term of	an arith	metic ser	iec ic	a where
1	THE nun	term or	an anun	mene sei	168 18	a_n where

$$a_{10} + a_{11} + a_{12} = 129$$
 and $a_{19} + a_{20} + a_{21} = 237$

Find a_1		
		(4)

 	۰																			
				 					 		 	 			 					ı

(Total for Question 1 is 4 marks)

2	The point A has coordinates $(-5, 3)$, the point B has coordinates $(4, 0)$ and the point C has coordinates $(-1, 5)$.	
	The line l passes through C and is perpendicular to AB .	
	(a) Find an equation of l . Give your answer in the form $ax + by + c = 0$ where a , b and c are integers.	(4)
	The line l intersects AB at the point D .	
	(b) Show that the coordinates of D are $(-2, 2)$.	(0)
		(3)
	(c) Show that l is not the perpendicular bisector of AB .	(2)
	(d) Find the value of $\tan \angle ABC$.	
	Give your answer in its simplest form.	(4)

Question 2 continued

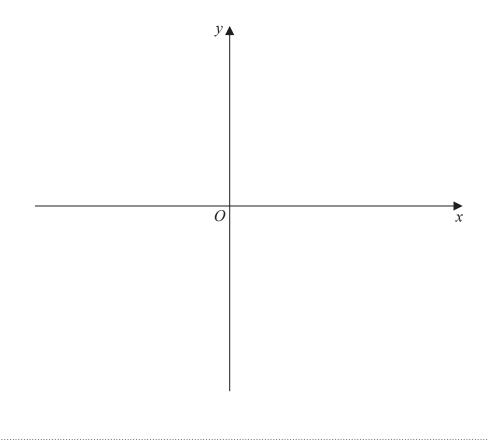
3 Curve C has equation $y = \frac{ax+3}{1-2x}$ where $x \neq \frac{1}{2}$ and a is a constant.

The asymptote to C that is parallel to the x-axis has equation y = 4

(a) Find the value of a

(2)

(b) Write down the equation of the asymptote to C that is parallel to the y-axis.


(1)

- (c) Find the coordinates of the point where C crosses
 - (i) the x-axis,
- (ii) the y-axis.

(2)

(d) Using the axes below, sketch C, showing clearly the asymptotes and the coordinates of the points where C crosses the coordinate axes.

(4)

4	$f(x) = x^3 + px^2 + qx + 6$ where p and q are constants.	
	Given that $(x - 1)$ is a factor of $f(x)$ and that when $f(x)$ is divided by $(x + 1)$ the remainder is 8	
	(a) (i) show that $p = -2$	
	(ii) find the value of q	(6)
	(b) Hence, solve the equation $f(x) = 0$	(3)

5 Given that k is a non-zero constant

curve C has equation
$$kx^2 - xy + (k+1)x = 1$$

straight line *l* has equation
$$y = \frac{k}{2}x + 1$$

The point A is the only point that lies on both C and l.

(a) Find the value of k

(6)

(b) Hence, find the coordinates of A.

(2)

- Given that $(8+3x)^{\overline{3}}$ can be expressed in the form $p(1+qx)^{\overline{3}}$ where p and q are constants.
 - (a) find the value of p and the value of q

(2)

(b) Hence, expand $(8 + 3x)^{\frac{1}{3}}$ in ascending powers of x up to and including the term in x^2 , expressing each coefficient as an exact fraction in its lowest terms.

(3)

Using the expansion found in part (b) with a suitable value of x

(c) show that $\sqrt[3]{9} \approx \frac{599}{288}$

(2)

7 (a) Complete the table of values for

$$y = 0.5^{\left(\frac{x}{3}+1\right)} + 2$$

giving each value to 2 decimal places where appropriate.

x	-6	-5	-4	-3	-2	-1	0
y	4	3.59	3.26				2.5

(2)

(b) On the grid opposite, draw the graph of $y = 0.5^{\left(\frac{x}{3}+1\right)} + 2$ for $-6 \le x \le 0$

(2)

(c) By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, of the root of the equation

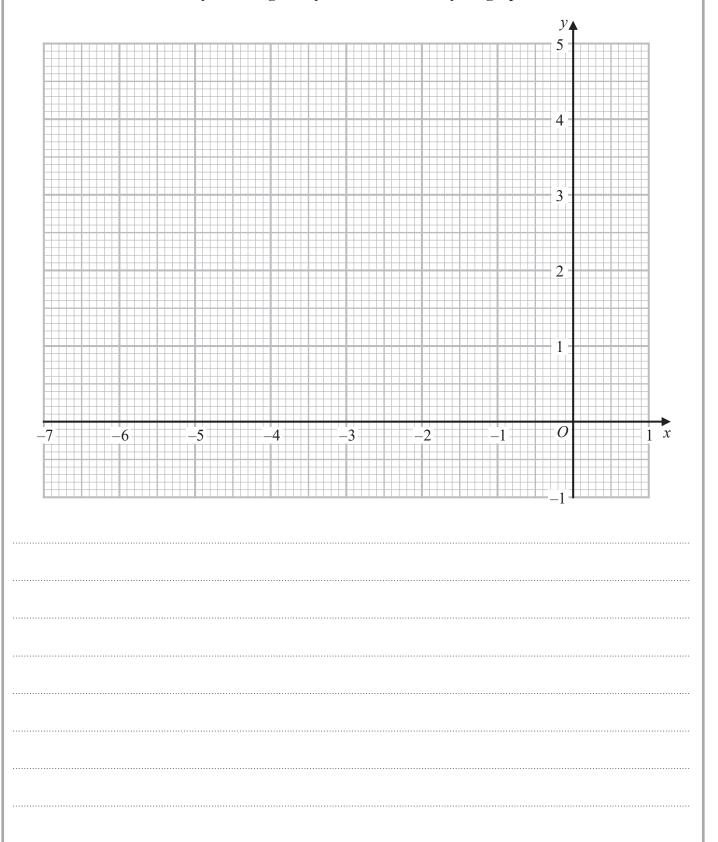
$$\log_2(2x+2)^3 + x + 3 = 0$$
 in the interval $-6 \le x \le 0$

(6)

Question 7 continued 3 2 Turn over for a spare grid if you need to redraw your graph.

->>>>	$\times \times$
	\bowtie
	KO -
	~~
XO	i××
XX 44	\bowtie
	$\times \times \rangle$
-000	
- X X 72	!XX
	$\infty \sim$
XXX	
ש	
XXX	$\times \times$
\cdots	
	VX.
$\times \times \times \times$	$\propto \times$
	XX.
XXX	XX.
XX 20 0	KX2
5	
	\sim
$\sim\sim\sim$	\sim
× ni	XX.
V-V-V-V-V	\sim
\times	×××
$\propto \sim$	500 -
	IXX -
	$\times \times$
	00
XXX	$\times \times$
	$r_X x_X =$
000	∞
XXX	UXX.
1	$r \times r = r$
$\times v$	\sim
XX 27	
	XX
	$\sim\sim$
XXXX	₩
XX	- XX
XXX	iXX
$\nabla \nabla \nabla \nabla$	\sim
000	500 -
X 200	$\times \times$
>>36M5	DXX -
E A	$\sim\sim$
	K\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
XX	XX
XXXX	$\times \times$
\times	$\times \times$
$\sim\sim$	~~
$\times\times\times$	$\times \times$
\times	$\sim\sim$
	\times
$\sim\sim\sim$	VV
$\times\times\times$	$\times \times$
	$\sim \sim$
	XXX -
	XX
$\times\!\!\times\!\!\times\!\!\times$	$\sim\sim$
$-\infty$	
$\times\!\!\times\!\!\times$	XX.
	××
	$\times\!$

	\otimes
G	
G	
00	
00	
00	
t od	
DO N	
DO N	
DOING	
ONFOC	
ONFOC	
ONFOC	
TOWOR	
DOMOTA	
DOMOTA	
A LON OC	
MIONOG	
MIONOG	
MIONOG	
BO NOT WR	
DO NOT WRITE	
DO NOT WRITE	
DO NOT WRITE	
DO NOT WRITE!	
DO NOT WRITE II	
DO NOT WRITE IN	
DO NOT WRITE IN T	
DO NOT WRITE IN TH	
DO NOT WRITE IN THIS	
DO NOT WRITE IN THIS A	
DO NOT WRITE IN THIS A	
DO NOT WRITE IN THIS AR	
DO NOT WRITE IN THIS AR	
DO NOT WRITE IN THIS AR	
DO NOT WRITE IN THIS ARE	
DO NOT WRITE IN THIS ARE	
DO NOT WRITE IN THIS ARE	
DO NOT WRITE IN THIS AR	


				>	
×				>	
V				۲	
X				>	
\vee				١.	
×	S	n	ú	è	
V	А	Б		7	
	S				,
X	Κ	a	6	2	٤
×	4	r		2	
	0	6	÷	ú	
	١,	2	7		
	4	2	2	\geq	٤
	2	₹			,
	ì			z	
×		7		5	ζ
V	À		,	۹	١
	4	K		4	
X		7	۹	7	
V	2	2	2	\sim	
	ø	₹	7	₹	
X				2	٢
×		2	4	2	í
	b	¢		c	
\wedge	S	ä	á	₽	۰
×			Ħ	٩	í
	à	4	÷	≤	
\triangle	N	Z		7	
	à		٣	9	,
	À	'n	ø	'n	
	3				i
×	Ġ	è	ń		
\vee				1	,
	1				
X	Ч	ν	Я		
×				N	
	À	6	ù	6	
X	S	7		Z	
	ð	۹	,		
	3	ú		S	
	d	7	7	7	۰
				\rangle	٥
0	à	£	ü	≤	
8			Š	₹	
	Ś	è	6	è	í
	2		7		
Ŏ	ì	ń		k	ì
X	S	ú	ú	÷	í
	2.		7	2	
Ŏ	u	r	à	۳	
X	S	9	я	2	١
	Ì	6	ü	۷	
		Я			
	à	ø	e	7	
\circ	À	Ĺ	i	Ĺ	
	à	2		K	
	Q	7	7	9	ę
V	4	P		B	
	1	ĸ	1		
\times	q	ĸ	S	2	
V	2	٦	۲		
	à	ø	ø	₹	
\triangle				2	
				>	
Ŏ	1			2	
				>	

Question 7 continued	

Question 7 continued

Only use this grid if you need to redraw your graph.

(Total for Question 7 is 10 marks)

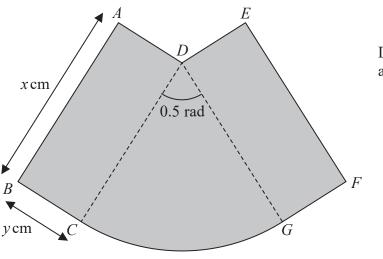


Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows a badge, shown shaded, made from two identical rectangles, ABCD and DEFG, and a sector DCG of a circle with centre D.

Each rectangle measures x cm by y cm.

The radius of the sector is x cm and the angle CDG is 0.5 radians.

The area of the badge is 50 cm²

The perimeter of the badge is Pcm.

(a) Show that

$$P = 2x + \frac{100}{x} \tag{5}$$

Given that x can vary,

(b) use calculus, to find the exact value of x for which P is a minimum. Justify that this value of x gives a minimum value for P

(6)

(c) Find the minimum value of P Give your answer in the form $k\sqrt{2}$, where k is an integer to be found.

(2)

$\times\!\!\times\!\!\times\!\!\times\!\!\times$
XXXXXX
$\otimes \Box \otimes$
00200
∞
0000000
◇◇
$\otimes\otimes\otimes$
OOOO!
882
000000
× 370 × ×
XXXXXX
\times
XXnn XX
\times
\times
00 000 00
0000000
XXXXXX
ARE
33 - 33 XX
×30×
2
\times in \times
××××××
\times
XXXXXX
XXXXXX
XXXXXX
~~~~~~
******
TON OC
DO NOTA
DO NOTA
DO NOTA
DO NOTA
DO NOT WR
DO NOT WR
DO NOT WRIT
DO NOT WRIT
DO NOT WRITE
DO NOT WRITE IN
DO NOT WRITE IN TH
DO NOT WRITE IN THIS
DO NOT WRITE IN THIS AREA

Question 8 continued	





9	Giving each value in your solution to 2 decimal places, solve the simultaneous equations						
	$e^{2y} - x + 2 = 0$						
	$\ln(x+3) - 2y - 1 = 0$						
		(8)					



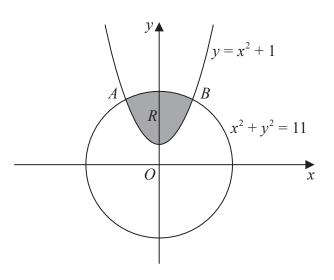



Diagram **NOT** accurately drawn

Figure 2

The region R, shown shaded in Figure 2, is bounded by the curve with equation  $y = x^2 + 1$  and the curve with equation  $x^2 + y^2 = 11$ 

The two curves intersect at the point A and at the point B.

(a) Find the x coordinate of the point A and the x coordinate of the point B.

**(4)** 

The region R is rotated through 360° about the x-axis.

(b) Use algebraic integration to find the volume, to 2 decimal places, of the solid generated.

**(5)** 




XX.	$\mathbb{R}^{\times}$
× <del>-</del>	
×0	ĸX
	$\bowtie$
$\times$	$\approx$
WRI	iΧX
	ĸ
- XX-9 0	KX
	⋉
	$\bowtie$
-XXXX	XX
X	KX.
	X
	ì≫
	$\approx$
	XX
	KX
200	İΩ
XX.	ČΧ
THIS ARE	$\bowtie$
XX 24	$\times$
	$\times\!\!\times\!\!\times$
	KΧ
XXX	žΧ
XX 9	$\bowtie$
8800	ΙXΧ
-002Z	<b>!</b>
	ĶÇ,
$\times\!\!\times\!\!\times$	$\times$
$\times\!\!\times\!\!\times$	
-XXX	XX
$\rightarrow \sim \sim$	$\times\!\!\!\times\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
	XX
	$\times$
$\times\!\!\times\!\!\times$	
-8888	XX
$-\infty$	$\times$
$\times\!\!\times\!\!\times$	$\times\!\!\times$
$\times\!\!\times\!\!\times$	$\times$
***	XX.
	$\times$
	88
$\times$	$\otimes$
$\times\!\!\times\!\!\times$	$\times$
***	XX
	××
	88
$\times\!\!\times\!\!\times$	X
© O	$\times$
	$\times\!\!\times$
	KΧ
$-\infty$	$\times\!\!\!\times\!\!\!\!\circ$
XX 32	KX.
NO O	ŬΧ
$\times$	$\bowtie$
	$\bowtie$
	!XX
	$\otimes$
	$\times$
	ĭ₩
- X X	$\bowtie$
	X
	KX
- (X)	KX.
-8888	500
$\times$	$\bowtie$
XX	
	$\times$
	$\otimes$
2	$\bigotimes$
NIES	
21 107	
NIMISA	
NIHISA	
N THIS AR	
7	
7	
7	
7	
7	
7	
AREA	
7	
AREA	
AREA DO NO	
AREA DO NO	
AREA DO NOT	
AREA DO NOT WRI	
AREA DO NOT WRIT	
AREA DO NOT WRITE IN	
AREA DO NOT WRITE IN TH	
AREA DO NOT WRITE IN TH	
AREA DO NOT WRITE IN TH	
AREA DO NOT WRITE IN THIS	
AREA DO NOT WRITE IN THIS	
AREA DO NOT WRITE IN THIS	
AREA DO NOT WRITE IN THIS	
AREA DO NOT WRITE IN THIS ARE	
AREA DO NOT WRITE IN THIS ARE	
AREA DO NOT WRITE IN THIS AR	

DO

Question 10 continued



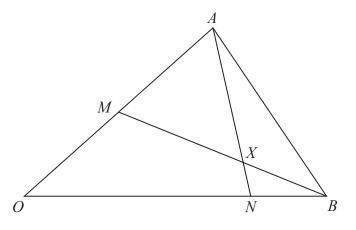



Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows triangle  $\overrightarrow{OAB}$  with  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$ 

M is the midpoint of OA.

N is the point on OB such that ON: NB = 3:1

The lines AN and BM intersect at the point X.

- (a) Find expressions, in terms of a and b, for
  - (i)  $\overrightarrow{AN}$
- (ii)  $\overrightarrow{BM}$

(3)

(b) Using a vector method, find AX:XN

(7)




Question 11 continued	
	(Total for Question 11 is 10 marks)
	TOTAL FOR PAPER IS 100 MARKS

