Write your name here Surname	Oth	er names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Freetla au De		h 1!
Further Pu	ire Mat	nematics
Paper 1	ire Mat	
		Paper Reference 4PM0/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1

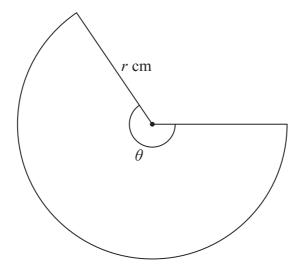


Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows a sector of a circle. The circle has radius r cm and the sector has angle θ radians. The sector has an arc length of 18π cm and an area of 126π cm².

Find

- (i) the value of r,
- (ii) the exact value of θ .

(5)

2	$f(x) = 2x^3 - 3px^2 + x + 4p \text{where } p \text{ is an integer.}$	
	Given that $(x - 4)$ is a factor of $f(x)$	
	(a) show that the value of p is 3Using this value of p,	(2)
	(b) find the remainder when f(x) is divided by (x + 2)(c) factorise f(x) completely	(2)
	(d) solve the equation $2x^3 - 3px^2 + x + 4p = 0$	(2)

3 Use algebra to find the set of values of x for which $(3x-1)(x-1) < 2(3x-1)$	(5)
(Total for Question 3 is	5 marks)

4 The *n*th term of a geometric series is t_n and the common ratio is r.

Given that $t_2 + t_5 = \frac{28}{81}$ and $t_2 - t_5 = \frac{76}{405}$

- (a) (i) show that $r = \frac{2}{3}$
 - (ii) find the first term of the series.

(6)

(b) Find the sum to infinity of this geometric series.

(2)

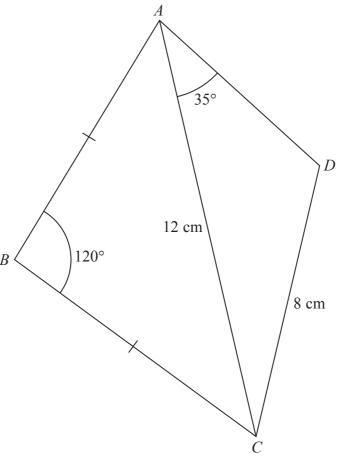


Diagram **NOT** accurately drawn

Figure 2

Figure 2 shows the quadrilateral ABCD in which AB = BC.

$$DC = 8 \text{ cm}$$
 $AC = 12 \text{ cm}$ $\angle ABC = 120^{\circ}$ $\angle CAD = 35^{\circ}$

Find

(a) the exact length, in cm, of AB.

(2)

Given that angle ADC is obtuse, find

(b) the size, in degrees to 1 decimal place, of angle ADC,

(3)

(c) the area, in cm^2 to 3 significant figures, of the quadrilateral *ABCD*.

(6)

Question 5 continued	
	,

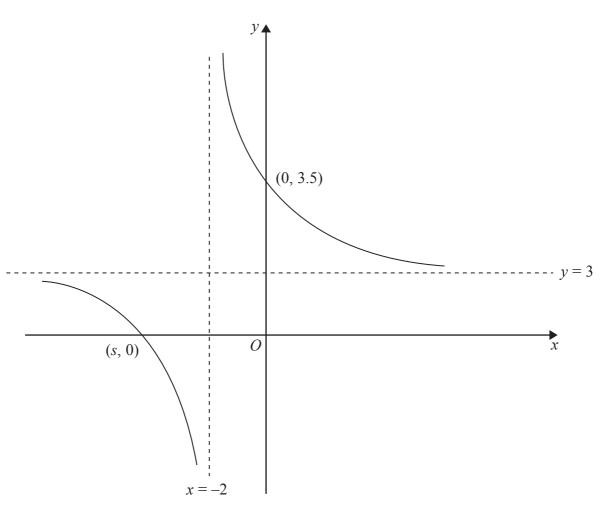


Figure 3

Figure 3 shows a sketch of the curve with equation

$$y = \frac{bx + c}{x + a} \qquad x \neq -a,$$

where a, b and c are integers.

The equations of the asymptotes to the curve are x = -2 and y = 3

The curve crosses the y-axis at (0, 3.5)

(a) Write down the value of a and the value of b.

(2)

(b) Find the value of c.

(2)

Given that the curve crosses the x-axis at (s, 0)

(c) find the value of s.

(2)

7 (a) Complete the table of values for $y = \ln(5x + 1) + 2$ giving your answers to 2 decimal places.

x	0	1	2	3	4	5	6	7
y	2		4.40	4.77	5.04		5.43	

(2)

(b) On the grid opposite draw the graph of $y = \ln(5x + 1) + 2$ for $0 \le x \le 7$

(2)

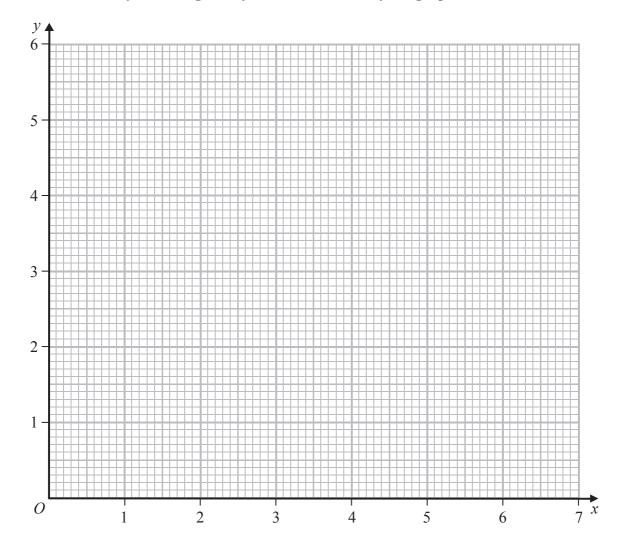
(c) By drawing an appropriate straight line on the grid, obtain an estimate, to 1 decimal place, of the positive root of the equation $\ln(5x+1) - x = 0$ in the interval $0 \le x \le 7$

(3)

(d) By drawing an appropriate straight line on the grid, obtain an estimate, to 1 decimal place, of the root of the equation $e^{(3x-1)} = 5x + 1$ in the interval $0 \le x \le 7$

(4)

Question 7 continued Turn over for a spare grid if you need to redraw your graph



Question 7 continued	

Question 7 continued

Only use this grid if you need to redraw your graph

(Total for Question 7 is 11 marks)

- 8 (a) (i) Expand $\left(1 + \frac{x}{2}\right)^{-3}$ in ascending powers of x up to and including the term in x^3 , expressing each coefficient as an exact fraction in its lowest terms.
 - (ii) Find the range of values for which your expression is valid.
 - (4)
 - (b) Express $(2 + x)^{-3}$ in the form $A(1 + Bx)^{-3}$ where A and B are rational numbers whose values should be stated.
 - $f(x) = \frac{(1+4x)}{(2+x)^3}$ (2)
 - (c) Obtain a series expansion for f(x) in ascending powers of x up to and including the term in x^2 .
- (2)
- (d) Hence obtain an estimate, to 3 significant figures, of $\int_0^{0.2} \frac{(1+4x)}{(2+x)^3} dx$
- (3)

Question 8 continued	

- 9 The equation $3x^2 4x + 6 = 0$ has roots α and β .
 - (a) Without solving the equation, write down
 - (i) the value of $\alpha + \beta$
 - (ii) the value of $\alpha\beta$


(2)

(b) Without solving the equation, show that $\alpha^3 + \beta^3 = -\frac{152}{27}$

- (3)
- (c) Form a quadratic equation, with integer coefficients, that has roots $\frac{\alpha}{\beta^2}$ and $\frac{\beta}{\alpha^2}$

1	5	1
u	J	-)

	XXXXX
	$\times \times \times \times \times$
2	$\langle x x x x x x x x x x x x x x x x x x x$
>	$\circ\circ\circ\circ$
	∞
ς	
	$\times\!\!\times\!\!\times\!\!\times\!\!\times$
2	\times
	∞
	$\sim\sim\sim$
	XXXXX
	XXXXX
2	$\Diamond \Diamond $
	∞
	66666
	$\times\!\!\times\!\!\times\!\!\times\!\!\times$
	$\times\!\!\times\!\!\times\!\!\times\!\!\times$
	$\times\times\times\times$
	$\Diamond \times \times \times \times$
	$\propto \times \times \times \times$
	$\times \times $
	$\times 1000 \mathrm{K} \times 1$
	DON
	NO
	∞
	$\times \times \times \times$
	$\times \times \times \times$
	XX - XX
>	$\propto \sim \times \times$
S	TWRIT
ς	$\times = \times \times$
	$\times \times \times \times \times$
	$\times \times \times \times \times$
2	
	\times
	\times
	\times
	\times
	$\times \times \times \times$
	XXX
	WRITE IN TH
	$\times \times $
	TE IN THIS
K	UA.
2	$\Diamond \nabla \nabla X \times X \times$
	$\times \times \times \times \times$
S	
⟨	XXII 60
Ċ	\times
2	VXXX
	SAREA
١	
⟨	\times
>	\times
>	
ς	//////
<	$\times \times \times \times \times \times$
2	25555
>	$\times \times \times \times$
	$\wedge \wedge \wedge \wedge \wedge$
	$\times \times \times \times \times$
S	
	XXX
3	
2	DO NOT WRITE IN THIS AREA

Question 9 continued	

10	A particle <i>P</i> moves along the positive <i>x</i> -axis. At time <i>t</i> seconds ($t \ge 0$) the velocity, v m/s, of <i>P</i> is given by $v = t^3 - 4t^2 + 5t + 1$	
	The acceleration of P at time t seconds is $a \text{ m/s}^2$	
	(a) Find an expression for a in terms of t .	(2)
	(b) Find the values of <i>t</i> for which the magnitude of the acceleration of <i>P</i> is instantaneously zero.	(2)
		(2)
	When $t = 0$, the displacement of P from the origin is 3 m.	
	(c) Find the displacement of P from the origin when $t = 2$	(5)

Question 10 continued	

11	The curve C has equation $y = px + qx^2$ where p and q are integers.	
	The curve C has a stationary point at $(3, 9)$.	
	(a) (i) Show that $p = 6$ and find the value of q .	
	(ii) Determine the nature of the stationary point at (3, 9).	(7)
	The straight line l with equation $y + x - 10 = 0$ intersects C at two points.	
	(b) Determine the <i>x</i> coordinate of each of these two points of intersection.	(3)
	The finite region bounded by the curve C and the straight line l is rotated through 360° about the x -axis.	
	(c) Use algebraic integration to find the volume of the solid formed. Give your answer	
	in terms of π .	(5)

Question 11 continued

Question 11 continued	
	(Total for Question 11 is 15 marks)
	TOTAL FOR PAPER IS 100 MARKS

