Edexcel and BTEC Qualifications
Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844 576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(y = \frac{-5}{4}x - \frac{15}{4}), gradient = (-\frac{3}{2}) oe (y = \frac{10}{15}x - \frac{9}{15}), gradient = (\frac{2}{3}) oe Product of gradients = (-\frac{3}{2} \times \frac{2}{3} = -1) ⇒ lines perpendicular</td>
<td>M1 A1 A1 A1 4</td>
</tr>
<tr>
<td>2</td>
<td>(x(x + 2) - (x + 1) = 2(x + 1)(x + 2)) (x^2 + x - 1 = 2x^2 + 6x + 4) (x^2 + 5x + 5 = 0) (x = \frac{-5 \pm \sqrt{25 - 20}}{2} = -3.62, -1.38)</td>
<td>M1 A1 M1 A1 4</td>
</tr>
<tr>
<td>3</td>
<td>((3x + 1)(2x - 7) < 0) (-\frac{1}{3} < x < 3 \frac{1}{2})</td>
<td>M1 A1 M1 A1 4</td>
</tr>
<tr>
<td>4</td>
<td>(10! \left(\frac{1}{\sqrt{3}}\right)^3) (= 120 \cdot \frac{1}{27\sqrt{3}}) (= 120 \cdot \frac{\sqrt{3}}{27}) (= \frac{40}{27}\sqrt{3})</td>
<td>Allow all marks if (x^7) included. M1 A1 M1 rationalise A1 4</td>
</tr>
</tbody>
</table>
| 5 | (a) \(\frac{dy}{dx} = x^2e^x + 2xe^x \) (b) \(\frac{dy}{dx} = 5(x^3 + 2x^2 + 3)^4(3x^2 + 4x) \) | M1 two terms with one correct M1 use chain rule A1 5}
(a) | x | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>2.91</td>
<td>2.63</td>
<td>2.20</td>
<td>1.62</td>
<td>0.95</td>
<td>0.21</td>
<td>-0.53</td>
</tr>
</tbody>
</table>

(b) $y = 3x - 1.5$

(c) $2x - 1 = 2 \cos \left(\frac{x}{2}\right)$
$3x - 1.5 = 3 \cos \left(\frac{x}{2}\right)$
$y = 3x - 1.5$
(a) \(A (1\frac{1}{2} , 0) , B (0 , 1) \)

(b) (i) \(x = 3 \)
(ii) \(y = 2 \)

(c) \[y = \frac{1}{3} \]

(d) \(\frac{dy}{dx} = \frac{2(x-3) - (2x-3)}{(x-3)^2} = \frac{-3}{(x-3)^2} \)
At \(B, x = 0 \) so \(\frac{dy}{dx} = \frac{-3}{(-3)^2} = \frac{-1}{3} \)
Grad of normal = \(-1/(-1/3) = 3\)
Normal \(y = 3x + 1 \)

(e) At \(D, x = 3 + 1 = \frac{2x-3}{x-3} \)
\(3x^2 - 8x - 3 = 2x - 3 \)
\(3x^2 - 10x = 0 \)
\(x(3x - 10) = 0 \)
\(x = 0 \) or \(x = 10/3 \)
At \(D, x = 3\frac{1}{3} \)

B1, B1
B1
B1

two branches in correct quadrants
asymptotes depend on some curve
intercepts

M1 Quotient rule
A1 Result (unsimplified)
A1
B1ft
B1ft
M1
A1
M1
A1
16
8

(a) \(k = \frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1 \)

(b) \(\alpha \beta = 15 \) and \(\alpha + \beta = -m \)

\[-h = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - 2\alpha \beta}{\beta \alpha} \]

\[\Rightarrow h = \frac{30 - m^2}{15} \]

(c) \(\alpha \beta = 15 \Rightarrow \alpha(2\alpha + 1) = 15 \)

\[2\alpha^2 + \alpha - 15 = 0 \]

\[(2\alpha - 5)(\alpha + 3) = 0 \]

\[\alpha = 2.5 \text{ or } \alpha = -3 \]

(d) \(\beta = 2 \times 2.5 + 1 = 6 \) or \(\beta = 2 \times -3 + 1 = -5 \)

\[m = -(\alpha + \beta) = -(2.5 + 6) \text{ or } -(-3 - 5) \]

\[m = -8.5 \text{ or } 8 \]

9

(a) \(BD^2 = 5^2 + 6^2 = 61, BC^2 = 8^2 + 6^2 = 100, CD^2 = 8^2 + 5^2 = 89 \)

\[100 = 61 + 89 - 2 \sqrt{61 \cdot 89} \cos \angle BDC \]

\[\cos \angle BDC = \frac{25}{\sqrt{61 \cdot 89}} \approx 0.3393 \]

\[\angle BDC = 70.2^\circ \]

(b) Area \(BDC = \frac{1}{2} \sqrt{61 \cdot 89} \sin 70.2^\circ \approx 34.7 \text{ cm}^2 \) (3sf)

(c) Area \(DAC = \frac{1}{2} \times 5 \times 8 = 20 \)

(d) \(20 = \frac{1}{2} \times \sqrt{89} \times AE \Rightarrow AE = \frac{40}{\sqrt{89}} \)

(e) Angle is \(\angle BEA \)

\[\tan \angle BEA = \frac{6}{AE} = \frac{6 \sqrt{89}}{40} \]

\[= 1.415 \]

\[\Rightarrow \angle BEA = 54.8^\circ \]
10

(a)
(i) \[\overrightarrow{BC} = -\frac{1}{2} \mathbf{c} - \mathbf{a} + \frac{1}{2} \mathbf{c} - \mathbf{a} \]

(ii) \[\overrightarrow{PQ} = \frac{1}{2} \mathbf{a} + \frac{1}{2} \mathbf{c} + \frac{1}{2}(\frac{1}{2} \mathbf{c} - \mathbf{a}) = \frac{5}{12} \mathbf{a} + \frac{7}{6} \mathbf{c} \]

(b)
(i) \[\overrightarrow{AT} = -\frac{3}{4} \mathbf{a} + \lambda \left(\frac{5}{12} \mathbf{a} + \frac{7}{6} \mathbf{c} \right) \]

(ii) \[\overrightarrow{AT} = \mu (\mathbf{c} - \mathbf{a}) \]

(c) \[-\frac{3}{4} \mathbf{a} + \lambda \left(\frac{5}{12} \mathbf{a} + \frac{7}{6} \mathbf{c} \right) = \mu (\mathbf{c} - \mathbf{a}) \]
\[\Rightarrow -\frac{3}{4} + \frac{5}{12} \lambda = -\mu \text{ and } \frac{7}{6} \lambda = \mu \]
\[\Rightarrow \frac{5}{12} \lambda = 9 - 8 \lambda \]
\[\Rightarrow \lambda = \frac{9}{13} \]
\[\Rightarrow PT: TQ = 9 : 4 \]

11

(a) \[V = \pi \int_0^h x^2 \, dy = \pi \int_0^h (10y - y^2) \, dy \]
\[= \pi \left[5y^2 - \frac{1}{3} y^3 \right]_0^h \]
\[= \pi \left[5h^2 - \frac{1}{3} h^3 \right] \]
\[= \frac{1}{3} \pi h^2 (15 - h) \]

(b) \[V = \pi (5h^2 - \frac{1}{3}h^3) \Rightarrow \frac{dV}{dh} = \pi (10h - h^2) \]

(c) \[\frac{dV}{dt} = \pi (10h - h^2) \frac{dh}{dt} \]
When \(h = 1.5 \), \(6 = \pi (15 - 2.25) \frac{dh}{dt} \)
\[\Rightarrow \frac{dh}{dt} = 6/(12.75 \pi) = 0.150 \text{ cm/s} (3sf) \]

(d) \[W = \pi y^2 = \pi (10y - y^2) \]
When depth is \(h \), \(W = \pi (10h - h^2) \)
\[\frac{dW}{dt} = \pi (10h - h^2) \frac{dh}{dt} = W \frac{dh}{dt} \]
Since \(\frac{dW}{dt} = 6 \), \(\frac{dh}{dt} = 6/W \) so \(k = 6 \)