

# INTERNATIONAL GCSE CHEMISTRY 4CH1

Mapping from Cambridge International Examinations to Pearson Edexcel (0620 to 4CH1)

#### Qualification at a Glance

| Cambridge International                                                            |                                |                    | P                    | earson Edexcel    |            |
|------------------------------------------------------------------------------------|--------------------------------|--------------------|----------------------|-------------------|------------|
| Availability                                                                       | Availability: January and June |                    |                      |                   |            |
| Two Tiers: Core and Extended                                                       | Number of Papers: Two Papers   |                    |                      |                   |            |
| Number of Papers: Three Papers at Core and Three at Extended                       |                                |                    |                      |                   |            |
|                                                                                    | Conten                         | t Summar           | y:                   |                   |            |
| Content Summary:                                                                   | Princip                        | les of Cher        | nistry               |                   |            |
| The particulate nature of matter                                                   | Inorgar                        | nic Chemist        | try                  |                   |            |
| Experimental techniques                                                            | Physica                        | l Chemistr         | Γ <b>γ</b>           |                   |            |
| Atoms, elements and compounds                                                      | Organie                        | c Chemistr         | у                    |                   |            |
| Stoichiometry                                                                      |                                |                    |                      |                   |            |
| Electricity and chemistry                                                          | Paper 1                        | L: 2 hours,        | , 61.1% of the qua   | lification        |            |
| Chemical energetics                                                                | Paper 2                        | <b>2:</b> 1 hour 1 | 5, 38.9% of the qu   | alification       |            |
| Chemical reactions                                                                 |                                |                    |                      |                   |            |
| Acid, bases and salts                                                              | Calcula                        | tor may be         | e used in the exan   | ninations.        |            |
| The Periodic Table                                                                 |                                |                    |                      |                   |            |
| Metals                                                                             |                                |                    |                      |                   |            |
| Air and water                                                                      | A01                            | Knowled            | lge and understan    | ding of chemistry | 38–42%     |
| Sulfur                                                                             | AO2                            | Applicati          | ion of knowledge     | and               | 38–42%     |
| Carbonates                                                                         |                                | understa           | anding, analysis ar  | nd evaluation of  |            |
| Organic Chemistry                                                                  |                                | chemistr           | γ                    |                   |            |
|                                                                                    | AO3                            | Experime           | ental skills, analys | is and evaluation | 19–21%     |
| Paper 1C: 45 minutes, 30% of the qualification, Multiple-Choice Questions          |                                | of data a          | and                  |                   |            |
| Paper 3C: 1 hour 15, 50% of the qualification, Short-answer and structured         |                                | methods            | s in chemistry       |                   |            |
| questions                                                                          |                                |                    |                      |                   |            |
| Or                                                                                 | Unit                           |                    | As                   | sessment Objectiv | e          |
| <b>Paper 2E:</b> 45 minutes, 30% of the qualification, Multiple-Choice Questions   |                                |                    | A01                  | AO2               | AO3        |
| <b>Paper 4E</b> : 1 hour 15, 50% of the qualification, Short-answer and structured | Paper                          | 1                  | 23.2-25.7%           | 23.2–25.7%        | 11.6-12.8% |
| questions                                                                          | Paper                          | 2                  | 14.8-16.3%           | 14.8–16.3%        | 7.4–8.2%   |
| All condidates also have to take Common ant F or C                                 | Total                          |                    | 38–42%               | 38–42%            | 19–21%     |
| An candidates also have to take component 5 or 6.                                  |                                |                    |                      |                   |            |
| experimental skills                                                                |                                |                    |                      |                   |            |
| Paper 65: 1 hour 20% of the qualification Alternative to Practical substitutes     |                                |                    |                      |                   |            |
| hased on experimental skills                                                       |                                |                    |                      |                   |            |
|                                                                                    |                                |                    |                      |                   |            |

| Core: T | argeted at C-         | G candidates       |                  |      |
|---------|-----------------------|--------------------|------------------|------|
| Extend  | l <b>ed:</b> Targeted | at A*-C candida    | ates             |      |
|         | •                     |                    |                  |      |
| A01     | Knowledge             | and understan      | ding             | 50 % |
| AO2     | Handling in           | formation and      | problem solving  | 30 % |
| AO3     | Experiment            | tal skills and inv | estigations      | 20 % |
|         |                       |                    |                  |      |
| Unit    |                       | A                  | ssessment Object | ive  |
|         |                       | A01                | AO2              | AO3  |
| Paper   | r 1 and 2             | 25 %               | 15 %             | 0 %  |
| Pape    | r 3 and 4             | 25 %               | 15 %             | 0 %  |
| Pape    | r 5 and 6             | 0 %                | 0 %              | 20 % |
| Total   |                       | 50 %               | 30 %             | 20 % |

#### Cambridge IGCSE Chemistry Mapped Against Edexcel International GCSE

1. Detailed Comparison of Specifications

This is broken down by Cambridge specification heading

#### 1 The particulate nature of matter

| Cambridge                                                     | Edexcel                                          | Notes                                               |
|---------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
| 1.1 The particulate nature of matter                          |                                                  |                                                     |
| State the distinguishing properties of solids,                | 1.1 understand the three states of matter in     | Treatment of these topics is similar.               |
| liquids and gases                                             | terms of the arrangement, movement and           |                                                     |
| Describe the structure of solids, liquids and gases           | energy of the particles                          |                                                     |
| in terms of particle separation, arrangement and              |                                                  |                                                     |
| types of motion                                               |                                                  |                                                     |
| Describe changes of state in terms of melting,                | 1.2 understand the interconversions between      | Treatment of these topics is similar.               |
| boiling, evaporation, freezing, condensation and              | the three states of matter in terms of:          |                                                     |
| sublimation                                                   | the names of the interconversions                |                                                     |
| Explain changes of state in terms of the kinetic              | how they are achieved                            |                                                     |
| theory                                                        | • the changes in arrangement, movement and       |                                                     |
|                                                               | energy of the particles.                         |                                                     |
| Describe qualitatively the pressure and temperature of        |                                                  | A description of pressure not required for Edexcel, |
| a gas in terms of the motion of its particles                 |                                                  | but students should understand that particles move  |
|                                                               |                                                  | faster at higher temperature.                       |
| Show an understanding of the random motion                    |                                                  | Not required for Edexcel.                           |
| of particles in a suspension (sometimes known                 |                                                  |                                                     |
| as Brownian motion) as evidence for the kin <mark>etic</mark> |                                                  |                                                     |
| particle (atoms, molecules or ions) model of                  |                                                  |                                                     |
| matter                                                        | -                                                |                                                     |
| Describe and explain Brownian motion in terms                 |                                                  |                                                     |
| of random molecular bombardment                               | 4                                                |                                                     |
| State evidence for Brownian motion                            |                                                  |                                                     |
| Describe and explain diffusion                                | 1.3 understand how the results of experiments    | Treatment of these topics is similar.               |
| Describe and explain dependence of rate of                    | involving the dilution of coloured solutions and |                                                     |
| diffusion on molecular mass                                   | diffusion of gases can be explained              |                                                     |

# 2 Experimental techniques

| Cambridge                                                                                                                                                                                                                 | Edexcel                                                                                                                                      | Notes                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.1 Measurement                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                                |
| Name appropriate apparatus for the measurement of<br>time, temperature, mass<br>and volume, including burettes, pipettes and<br>measuring cylinders                                                                       |                                                                                                                                              | Not mentioned specifically on Edexcell syllabus but<br>students would be expected to use all these pieces<br>of apparatus and refer to them in exam questions. |
| 2.2 Purity                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                |
| 2.2.1 Criteria of purity                                                                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                |
| Demonstrate knowledge and understanding of<br>paper chromatography                                                                                                                                                        | <ul><li>1.10 describe these experimental techniques</li><li>for the separation of mixtures:</li><li> paper chromatography.</li></ul>         | Treatment of these topics is similar.                                                                                                                          |
| Interpret simple chromatograms                                                                                                                                                                                            | 1.11 understand how a chromatogram<br>provides information about the composition<br>of a mixture                                             |                                                                                                                                                                |
|                                                                                                                                                                                                                           | 1.13 practical: investigate paper<br>chromatography using inks/food colourings                                                               | Required practical for Edexcel.                                                                                                                                |
| Interpret simple chromatograms, including the use of <i>R</i> f values                                                                                                                                                    | 1.12 understand how to use the calculation of Rf values to identify the components of a mixture                                              |                                                                                                                                                                |
| Outline how chromatography techniques can<br>be applied to colourless substances by exposing<br>chromatograms to substances called locating<br>agents. (Knowledge of <i>specific</i> locating agents is<br>not required.) |                                                                                                                                              | The idea of locating agents not required.                                                                                                                      |
| Identify substances and assess their purity from melting point and boiling point information                                                                                                                              | 1.9 understand that a pure substance has a fixed melting and boiling point, but that a mixture may melt or boil over a range of temperatures | Treatment of these topics is similar.                                                                                                                          |
| Understand the importance of purity in substances in everyday life, e.g. foodstuffs and drugs                                                                                                                             |                                                                                                                                              | No specific references required – emphasis is on<br>understanding – teachers free to choose how they<br>illustrate.                                            |
| 2.2.2 Methods of purification                                                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                |
| Describe and explain methods of purification                                                                                                                                                                              |                                                                                                                                              | Treatment of these topics is similar.                                                                                                                          |

|                                                    | of a solid in water at a specific           |                                                    |
|----------------------------------------------------|---------------------------------------------|----------------------------------------------------|
|                                                    | 1.7C practical: investigate the solubility  |                                                    |
|                                                    | 1.6C understand how to plot and             |                                                    |
|                                                    | solvent                                     |                                                    |
|                                                    | solubility in the units g per 100 g of      |                                                    |
|                                                    | 1.5C know what is meant by the term         |                                                    |
|                                                    | · saturated solution.                       |                                                    |
|                                                    | · solution                                  | interpreting experimental and graphical data.      |
|                                                    | · solute                                    | opportunity to develop skills about processing and |
|                                                    | • solvent                                   | onique to Euexcei. This also provides all          |
|                                                    | 1.4 know what is meant by the terms:        | Unique to Edevcel. This also provides an           |
|                                                    |                                             |                                                    |
|                                                    |                                             |                                                    |
|                                                    |                                             |                                                    |
| information about the substances involved          |                                             |                                                    |
| Suggest suitable purification techniques, given    | · crystallisation                           |                                                    |
| products of fermentation in section 14.6.)         | · filtration                                |                                                    |
| distillation of netroleum in section 14.2 and      | · fractional distillation                   |                                                    |
| a fractionating column) (Refer to the fractional   | · simple distillation                       |                                                    |
| crystallisation and distillation (including use of | for the separation of mixtures.             |                                                    |
| by the use of a suitable solvent filtration        | 1.10 describe these experimental techniques |                                                    |

# 3 Atoms, elements and compounds

| Cambridge                                                                                                                                                                                                                   | Edexcel                                                                                                                                                                      | Notes                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 3.1 Atomic structure and the Periodic Table                                                                                                                                                                                 |                                                                                                                                                                              |                                                                                          |
| State the relative charges and approximate relative masses of protons, neutrons and electrons                                                                                                                               | 1.15 know the structure of an atom in terms<br>of the positions, relative masses and relative<br>charges of sub-atomic particles                                             | Identical treatment                                                                      |
| Define <i>proton number</i> (atomic number) as the number<br>of protons in the nucleus of an atom<br>Define <i>nucleon number</i> (mass number) as the<br>total number of protons and neutrons in the<br>nucleus of an atom | 1.16 know what is meant by the terms atomic number, mass number                                                                                                              | Note use of different terms – atomic number and mass number are more widely used.        |
| Use proton number and the simple structure of<br>atoms to explain the basis of the Periodic Table (see<br>section 9), with special reference to the elements of<br>proton number 1 to 20                                    | <ul> <li>1.18 understand how elements are arranged</li> <li>in the Periodic Table: <ul> <li>in order of atomic number</li> <li>in groups and periods.</li> </ul> </li> </ul> | Treatment of these topics is similar.                                                    |
| Define <i>isotopes</i> as atoms of the same element<br>which have the same proton number but a different<br>nucleon number                                                                                                  | 1.16 know what is meant by the terms isotopes                                                                                                                                | Treatment of these topics is similar.                                                    |
|                                                                                                                                                                                                                             | 1.16 know what is meant by the terms<br>relative atomic mass (Ar)                                                                                                            | Calculations required.<br>Also see Stoichiometry section                                 |
|                                                                                                                                                                                                                             | 1.17 be able to calculate the relative atomic mass of an element (Ar) from isotopic abundances                                                                               |                                                                                          |
| Understand that isotopes have the same                                                                                                                                                                                      |                                                                                                                                                                              | Not mentioned specifically but students would be                                         |
| properties because they have the same number<br>of electrons in their outer shell                                                                                                                                           |                                                                                                                                                                              | expected to understand this form the discussion on isotopes/electronic configuration etc |
| State the two types of isotopes as being                                                                                                                                                                                    |                                                                                                                                                                              | Not required                                                                             |
| radioactive and non-radioactive                                                                                                                                                                                             |                                                                                                                                                                              |                                                                                          |
| State one medical and one industrial use of                                                                                                                                                                                 |                                                                                                                                                                              |                                                                                          |

| radioactive isotopes                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   | Edexcel emphasis on understanding the principles                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Describe the build-up of electrons in 'shells'<br>and understand the significance of the noble<br>gas electronic structures and of the outer shell<br>electrons. (The ideas of the distribution<br>of electrons in s and p orbitals and in d block<br>elements are <b>not</b> required.) | <ul> <li>1.19 understand how to deduce the electronic configurations of the first 20 elements from their positions in the Periodic Table</li> <li>1.24 understand why the noble gases (Group 0) do not readily react</li> </ul>                                   | Treatment of these topics is similar.                                                                                                                            |
|                                                                                                                                                                                                                                                                                          | 1.23 understand why elements in the same<br>group of the Periodic Table have similar<br>chemical properties                                                                                                                                                       | Emphasising the importance of electronic configuration in determining the reactions of elements.                                                                 |
| 3.2 Structure and bonding                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                                  |
| 3.2.1 Bonding: the structure of matter                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                          | 1.14 know what is meant by the terms atom and molecule                                                                                                                                                                                                            |                                                                                                                                                                  |
| Describe the differences between elements,<br>mixtures and compounds, and between metals<br>and non-metals                                                                                                                                                                               | <ul> <li>1.8 understand how to classify a substance as<br/>an element, compound or mixture</li> <li>1.20 understand how to use electrical<br/>conductivity and the acid-base character of<br/>oxides to classify elements as metals or non-<br/>metals</li> </ul> | Similar approach.<br>Emphasis on electrical conductivity and nature of<br>oxides in classifying metals/non-metals. Malleability<br>explained in bonding section. |
| Describe an alloy, such as <mark>brass</mark> , as a mixture of a metal with other elements                                                                                                                                                                                              | 2.26C know that an alloy is a mixture of<br>a metal and one or more elements,<br>usually other metals or carbon                                                                                                                                                   | Brass not needed specifically – different forms of steel covered below.                                                                                          |
| 3.2.2 Ions and ionic bonds                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   |                                                                                                                                                                  |
| Describe the formation of ions by electron loss or gain                                                                                                                                                                                                                                  | 1.37 understand how ions are formed by electron loss or gain                                                                                                                                                                                                      | Treatment of these topics is similar.                                                                                                                            |
| Describe the formation of ionic bonds between                                                                                                                                                                                                                                            | 1.41 understand ionic bonding in terms of                                                                                                                                                                                                                         | Emphasis on understanding                                                                                                                                        |
|                                                                                                                                                                                                                                                                                          | <ul> <li>1.38 know the charges of these ions:</li> <li>metals in Groups 1, 2 and 3</li> <li>non-metals in Groups 5, 6 and 7</li> <li>Ag+, Cu<sub>2+</sub>, Fe<sub>2+</sub>, Fe<sub>3+</sub>, Pb<sub>2+</sub>, Zn<sub>2+</sub></li> </ul>                          | Note: Groups are <i>not</i> numbered using Roman numerals in Edexcel syllabus                                                                                    |

|                                                                                                                                                                                                                                             | <ul> <li>hydrogen (H+), hydroxide (OH-),<br/>ammonium (NH4+), carbonate (CO32-), nitrate<br/>(NO3-), sulfate (SO42-).</li> </ul>                                                                                   | A more complete approach is required for Edexcel<br>with the emphasis on understanding how to derive<br>the formula of any ionic compound.                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    | This is essential understanding if students are to pursue Chemistry further.                                                                                                                                             |
| Describe the formation of ionic bonds between<br>elements from Groups I and VII                                                                                                                                                             | 1.40 draw dot-and-cross diagrams to show<br>the formation of ionic compounds by electron<br>transfer, limited to combinations of elements<br>from Groups 1, 2, 3 and 5, 6, 7<br>only outer electrons need be shown |                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                             | 1.39 write formulae for compounds formed between the ions listed above                                                                                                                                             |                                                                                                                                                                                                                          |
| Describe the lattice structure of ionic compounds<br>as a regular arrangement of alternating positive<br>and negative ions                                                                                                                  | 1.42 understand why compounds with giant ionic lattices have high melting and boiling points                                                                                                                       | Emphasis on understanding rather than description                                                                                                                                                                        |
| 3.2.3 Molecules and covalent bonds                                                                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                          |
| Describe the formation of single covalent bonds<br>in H <sub>2</sub> , C <sub>12</sub> , H <sub>2</sub> O, CH <sub>4</sub> , NH <sub>3</sub> and HC <i>1</i> as the sharing of pairs of<br>electrons leading to the noble gas configuration | 1.44 know that a covalent bond is formed<br>between atoms by the sharing of a pair of<br>electrons                                                                                                                 | A more complete approach to covalent bonding –<br>the emphasis is on understanding covalent bonding<br>and being able to draw dot and cross diagrams for a<br>wide variety of molecules, including organic<br>molecules. |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    | Molecules where the central atom does not have a noble gas electronic configuration should be mentioned.                                                                                                                 |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    | An understanding of the nature of a covalent bond<br>in terms of electrostatic attraction between the<br>shared pair of electrons and both nuclei required.                                                              |
|                                                                                                                                                                                                                                             | 1.45 understand covalent bonds in terms of electrostatic attractions                                                                                                                                               |                                                                                                                                                                                                                          |
| Describe the electron arrangement in more complex covalent molecules such as N2, C2H4,                                                                                                                                                      | 1.46 understand how to use dot-and-cross diagrams to represent covalent bonds in:                                                                                                                                  |                                                                                                                                                                                                                          |

| CH30H and CO2                                                                                                                  | <ul> <li>diatomic molecules, including hydrogen,<br/>oxygen, nitrogen, halogens and hydrogen<br/>halides</li> <li>inorganic molecules including water,<br/>ammonia and carbon dioxide</li> </ul>                                                                                                                                                                |                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                | <ul> <li>organic molecules containing up to two<br/>carbon atoms, including methane, ethane,<br/>ethene and those containing halogen atoms.</li> </ul>                                                                                                                                                                                                          |                                                                                                                         |
| Describe the differences in volatility, solubility<br>and electrical conductivity between ionic and<br>covalent compounds      | 1.43 know that ionic compounds do not<br>conduct electricity when solid, but do conduct<br>electricity when molten and in aqueous                                                                                                                                                                                                                               | Emphasis on understanding.<br>Solubility not mentioned specifically.                                                    |
|                                                                                                                                | solution<br>1.51 know that covalent compounds do not<br>usually conduct electricity<br>1.55C understand why covalent<br>compounds do not conduct electricity                                                                                                                                                                                                    | Electrical conductivity can be understood based on the chemical principles covered in the syllabus.                     |
|                                                                                                                                | 1.56C understand why ionic compounds<br>conduct electricity only when molten or<br>in aqueous solution                                                                                                                                                                                                                                                          | (solubility very difficult to explain without reference<br>to polarity of solvents, which is not in either<br>syllabus) |
| Explain the differences in melting point and<br>boiling point of ionic and covalent compounds in<br>terms of attractive forces | <ul> <li>1.42 understand why compounds with giant ionic lattices have high melting and boiling points</li> <li>1.47 explain why substances with a simple molecular structures are gases or liquids, or solids with low melting and boiling points the term intermolecular forces of attraction can be used to represent all forces between molecules</li> </ul> | Treatment of these topics is similar.                                                                                   |
|                                                                                                                                | 1.48 explain why the melting and boiling<br>points of substances with simple molecular<br>structures increase, in general, with<br>increasing relative molecular mass                                                                                                                                                                                           | Explanation in terms of increasing strength of intermolecular forces.                                                   |
| 3.2.4 Macromolecules<br>Describe the giant covalent structures of graphite<br>and diamond                                      | 1.50 explain how the structures of diamond, graphite and $C_{60}$ fullerene influence their                                                                                                                                                                                                                                                                     | Emphasis on how the structure and bonding influence properties rather than describing structures.                       |

|                                                                                                                                                                          | physical properties, including electrical conductivity and hardness                                                                                                                                  | C <sub>60</sub> fullerene required.                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                          | 1.49 explain why substances with giant<br>covalent structures are solids with high<br>melting and boiling points                                                                                     |                                                                                                       |
| Relate their structures to their uses, e.g. graphite<br>as a lubricant and a conductor, and diamond in<br>cutting tools                                                  |                                                                                                                                                                                                      | Specific uses not required                                                                            |
| Describe the macromolecular structure of silicon(IV) oxide (silicon dioxide)                                                                                             |                                                                                                                                                                                                      | SiO <sub>2</sub> not required.                                                                        |
| Describe the similarity in properties between<br>diamond and silicon(IV) oxide, related to their<br>structures                                                           |                                                                                                                                                                                                      |                                                                                                       |
| 3.2.5 Metallic bonding                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                       |
| Describe metallic bonding as a lattice of positive<br>ions in a 'sea of electrons' and use this to describe<br>the electrical conductivity and malleability of<br>metals | <ul> <li>1.52C know how to represent a metallic lattice by a 2-D diagram</li> <li>1.54C explain typical physical properties of metals, including electrical conductivity and malleability</li> </ul> | Similar material covered but emphasis on understanding and explanation                                |
|                                                                                                                                                                          | 1.53C understand metallic bonding in terms of electrostatic attractions                                                                                                                              | This links together all three sections of bonding in that they all involve electrostatic attractions. |

## 4 Stoichiometry

| Cambridge                                                | Edexcel                                                         | Notes                                               |
|----------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|
| 4.1 Stoichiometry                                        |                                                                 |                                                     |
| Use the symbols of the elements and write the            |                                                                 | Basic knowledge that students would be expected     |
| formulae of simple compounds                             |                                                                 | to know.                                            |
| Deduce the formula of a simple compound from             |                                                                 |                                                     |
| the relative numbers of atoms present                    |                                                                 |                                                     |
| Deduce the formula of a simple compound from             |                                                                 |                                                     |
| a model or a diagrammatic representation                 |                                                                 |                                                     |
| Determine the formula of an ionic compound               |                                                                 | see above                                           |
| from the charges on the ions present                     |                                                                 |                                                     |
| Construct word equations and simple balanced             | 1.25 write word equations and balanced                          | Treatment of these topics is similar.               |
| chemical equations                                       | chemical equations (including state symbols):                   |                                                     |
| Construct equations with state symbols,                  | for reactions studied in this specification                     | Ionic equations should be covered as useful in      |
| including ionic equations                                | for unfamiliar reactions where suitable                         | section on Redox                                    |
| Deduce the balanced equation for a chemical              | information is provided.                                        |                                                     |
| reaction, given relevant information                     |                                                                 |                                                     |
| Define <i>relative atomic mass</i> , Ar, as the average  | 1.16 know what is meant by the terms                            | Also see3.1 Atomic structure and the Periodic Table |
| mass of naturally occurring atoms of an element          | atomic number, mass number, isotopes and                        |                                                     |
| on a scale where the 12C atom has a mass of              | relative atomic mass (Ar)                                       |                                                     |
| exactly 12 units                                         |                                                                 |                                                     |
| Define <i>relative molecular mass, M</i> r, as the sum   | 1.26 calculate relative formula masses                          | Treatment of these topics is similar.               |
| of the relative atomic masses. (Relative formula         | (including relative molecular masses) ( <i>M</i> <sub>r</sub> ) |                                                     |
| mass or Mr will be used for ionic compounds.)            | from relative atomic masses (Ar)                                |                                                     |
| (Calculations involving reacting masses in simple        |                                                                 |                                                     |
| proportions may be set. Calculations will <b>not</b>     |                                                                 |                                                     |
| involve the mole concept.)                               |                                                                 |                                                     |
| Define the <i>mole</i> and the Avogadro constant         | 1.27 know that the mole (mol) is the unit for                   | Avogadro constant not required – slightly different |
|                                                          | the amount of a substance                                       | emphasis                                            |
| Use the molar gas volume, taken as 24 dm <sub>3</sub> at | 1.28 understand how to carry out calculations                   | Treatment of these topics is similar.               |
| room temperature and pressure                            | involving amount of substance, relative                         |                                                     |
| Calculate stoichiometric reacting masses,                | atomic mass (Ar) and relative formula mass                      |                                                     |
| volumes of gases and solutions, and                      | ( <i>M</i> r)                                                   |                                                     |

| concentrations of solutions expressed in g / dm3<br>and mol / dm3. (Calculations involving the idea of<br>limiting reactants may be set. Questions on the gas<br>laws and the conversion of gaseous volumes to<br>different temperatures and pressures will not<br>be set.) | 1.29 calculate reacting masses using<br>experimental data and chemical equations<br>1.34C understand how to carry out<br>calculations involving amount of<br>substance, volume and concentration (in<br>mol/dm <sub>3</sub> ) of solution<br>1.35C understand how to carry out<br>calculations involving gas volumes and<br>the molar volume of a gas (24 dm <sub>3</sub> and<br>24 000 cm <sub>3</sub> at room temperature and |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                             | pressure (rtp))                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
| Calculate empirical formulae and molecular<br>formulae                                                                                                                                                                                                                      | <ul> <li>1.32 know what is meant by the terms<br/>empirical formula and molecular formula</li> <li>1.31 understand how the formulae of simple<br/>compounds can be obtained experimentally,<br/>including metal oxides, water and salts<br/>containing water of crystallisation</li> <li>1.33 calculate empirical and molecular<br/>formulae from experimental data</li> </ul>                                                  |                                |
| Calculate percentage yield and percentage purity                                                                                                                                                                                                                            | 1.30 calculate percentage yield                                                                                                                                                                                                                                                                                                                                                                                                 | Percentage purity not required |
|                                                                                                                                                                                                                                                                             | 1.36 practical: know how to determine the<br>formula of a metal oxide by combustion (e.g.<br>magnesium oxide) or by reduction (e.g.<br>copper(II) oxide)                                                                                                                                                                                                                                                                        |                                |

# 5 Electricity and chemistry

| Cambridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Edexcel                                                                                                                                                                                                                                                                                                                                                                                         | Notes                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 5.1 Electricity and chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.57C know that anion and cation are<br>terms used to refer to negative and<br>positive ions respectively                                                                                                                                                                                                                                                                                       |                                                                                                                    |
| Define electrolysis as the breakdown of an ionic<br>compound, molten or in aqueous solution, by the<br>passage of electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                 | Specific definition not required                                                                                   |
| <ul> <li>Describe the electrode products and the observations made during the electrolysis of:</li> <li>molten lead(II) bromide</li> <li>concentrated hydrochloric acid</li> <li>concentrated aqueous sodium chloride</li> <li>dilute sulfuric acid</li> <li>between inert electrodes (platinum or carbon)</li> </ul> Describe electrolysis in terms of the ions present and reactions at the electrodes in the examples given State the general principle that metals or hydrogen are formed at the negative electrode (cathode), and that non-metals (other than hydrogen) are formed at the positive electrode (anode) Predict the products of the electrolysis of a specified binary compound in the molten state | <ul> <li>1.58C describe experiments to<br/>investigate electrolysis, using inert<br/>electrodes, of molten compounds<br/>(including lead(II) bromide) and<br/>aqueous solutions<br/>(including sodium chloride, dilute<br/>sulfuric acid and copper(II) sulfate) and<br/>to<br/>predict the products</li> <li>1.60C practical: investigate the<br/>electrolysis of aqueous solutions</li> </ul> | Emphasis on a practical approach<br>Similar approach to understanding of the process<br>and prediction of products |
| Relate the products of electrolysis to the electrolyte and electrodes used, exemplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | Only inert electrodes required for Edexcel                                                                         |

| by the specific examples in the Core together        |                                      |                                                     |
|------------------------------------------------------|--------------------------------------|-----------------------------------------------------|
| with aqueous copper(II) sulfate using carbon         |                                      |                                                     |
| electrodes and using copper electrodes (as used      |                                      |                                                     |
| in the refining of copper)                           |                                      |                                                     |
| Describe the electroplating of metals                |                                      | Not required                                        |
| Construct ionic half-equations for reactions at      | 1.59C write ionic half-equations     |                                                     |
| the cathode                                          | representing the reactions at the    |                                                     |
|                                                      | electrodes during electrolysis and   |                                                     |
|                                                      | understand why these reactions are   |                                                     |
|                                                      | classified as oxidation or reduction |                                                     |
| Outline the uses of electroplating                   |                                      | Not required                                        |
| Describe the reasons for the use of copper and       |                                      | Students should be able to relate the properties of |
| (steel-cored) aluminium in cables, and why           |                                      | aluminium and copper to their uses                  |
| plastics and ceramics are used as insulators         |                                      |                                                     |
| Describe the transfer of charge during electrolysis  |                                      | Students should understand reactions at the         |
| to include:                                          |                                      | electrodes as oxidation and reduction               |
| — the movement of electrons in the metallic          |                                      |                                                     |
| conductor                                            |                                      |                                                     |
| — the removal or addition of electrons from the      |                                      |                                                     |
| external circuit at the electrodes                   |                                      |                                                     |
| — the movement of ions in the electrolyte            |                                      |                                                     |
| Predict the products of electrolysis of a specified  |                                      | Effect of concentration not required                |
| halide in dilute or concentrated aqueous solution    |                                      |                                                     |
| Describe, in outline, the manufacture of:            |                                      | Not required except that students should            |
| — aluminium from pure aluminium oxide in             |                                      | understand why aluminium is extracted by            |
| molten cryolite (refer to section 10.3)              |                                      | electrolysis                                        |
| - chlorine, hydrogen and sodium hydroxide            |                                      |                                                     |
| from concentrated aqueous sodium chloride            |                                      |                                                     |
| (Starting materials and essential conditions         |                                      |                                                     |
| should be given but not technical details or         |                                      |                                                     |
| diagrams.)                                           |                                      |                                                     |
| Describe the production of electrical energy from    |                                      | Not required                                        |
| simple cells, i.e. two electrodes in an electrolyte. |                                      |                                                     |
| (This should be linked with the reactivity series in |                                      |                                                     |

## 6 Chemical energetics

| Cambridge                                                                                                                                          | Edexcel                                                                                                                                                                          | Notes                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 6.1 Energetics of a reaction                                                                                                                       |                                                                                                                                                                                  | practical approach                    |
| Describe the meaning of <i>exothermic</i> and <i>endothermic</i> reactions                                                                         | 3.1 know that chemical reactions in which<br>heat energy is given out are described as<br>exothermic, and those in which heat energy<br>is taken in are described as endothermic | Treatment of these topics is similar. |
|                                                                                                                                                    | 3.2 describe simple calorimetry experiments<br>for reactions such as combustion,<br>displacement, dissolving and neutralisation                                                  | Practical approach                    |
|                                                                                                                                                    | 3.3 calculate the heat energy change from a measured temperature change using the expression $Q = mc\Delta T$                                                                    | Calculations required.                |
|                                                                                                                                                    | 3.4 calculate the molar enthalpy change ( $\Delta H$ ) from the heat energy change, $Q$                                                                                          |                                       |
| Draw and label energy level diagrams for<br>exothermic and endothermic reactions using data<br>provided<br>Interpret energy level diagrams showing | 3.5C draw and explain energy level<br>diagrams to represent exothermic and<br>endothermic reactions                                                                              | Treatment of these topics is similar. |
| exothermic and endothermic reactions                                                                                                               |                                                                                                                                                                                  |                                       |
| Describe bond breaking as an endothermic<br>process and bond forming as an exothermic<br>process                                                   | 3.6C know that bond-breaking is an<br>endothermic process and that bond-<br>making is an exothermic process                                                                      | Treatment of these topics is similar. |
| Calculate the energy of a reaction using bond energies                                                                                             | 3.7C use bond energies to calculate the<br>enthalpy change during a chemical<br>reaction                                                                                         |                                       |

|                                                     | <ul> <li>3.8 practical: investigate temperature<br/>changes accompanying some of the following<br/>types of change:</li> <li>salts dissolving in water</li> <li>neutralisation reactions</li> </ul> | Emphasis on practical work |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                     | combustion reactions.                                                                                                                                                                               |                            |
| 6.2 Energy transfer                                 |                                                                                                                                                                                                     |                            |
| Describe the release of heat energy by burning      | 4.11 know that a fuel is a substance that,                                                                                                                                                          |                            |
| fuels                                               | when burned, releases heat energy                                                                                                                                                                   |                            |
| State the use of hydrogen as a fuel                 |                                                                                                                                                                                                     |                            |
| Describe the use of hydrogen as a fuel reacting     |                                                                                                                                                                                                     |                            |
| with oxygen to generate electricity in a fuel cell. |                                                                                                                                                                                                     |                            |
| (Details of the construction and operation of a     |                                                                                                                                                                                                     |                            |
| fuel cell are not required.)                        |                                                                                                                                                                                                     |                            |
| Describe radioactive isotopes, such as 235U, as a   |                                                                                                                                                                                                     | Not required               |
| source of energy                                    |                                                                                                                                                                                                     |                            |

#### 7 Chemical reactions

| Cambridge                                         | Edexcel                                         | Notes                                            |
|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| 7.1 Physical and chemical changes                 |                                                 |                                                  |
| Identify physical and chemical changes, and       |                                                 | Not mentioned specifically but required ion pre- |
| understand the differences between them           |                                                 | International GCSE work                          |
| 7.2 Rate (speed) of reaction                      |                                                 |                                                  |
| Describe and explain the effect of concentration, | 3.10 describe the effects of changes in         | Similar approach except enzymes not required     |
| particle size, catalysts (including enzymes) and  | surface area of a solid, concentration of a     |                                                  |
| temperature on the rate of reactions              | solution, pressure of a gas, temperature and    |                                                  |
|                                                   | the use of a catalyst on the rate of a reaction |                                                  |
|                                                   | 3.11 explain the effects of changes in surface  |                                                  |
|                                                   | area of a solid, concentration of a solution,   |                                                  |
|                                                   | pressure of a gas and temperature on the        |                                                  |

|                                                                                                                                                                                                                                                                                                                                                                                     | rate of a reaction in terms of particle collision<br>theory<br>3.12 know that a catalyst is a substance that<br>increases the rate of a reaction, but is<br>chemically unchanged at the end of the<br>reaction<br>3.13 know that a catalyst works by providing<br>an alternative pathway with lower activation<br>energy |                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Describe and explain the effects of temperature<br>and concentration in terms of collisions between<br>reacting particles. (An increase in temperature<br>causes an increase in collision rate and more of<br>the colliding molecules have sufficient energy<br>(activation energy) to react whereas an increase<br>in concentration only causes an increase in<br>collision rate.) |                                                                                                                                                                                                                                                                                                                          |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                     | 3.14C draw and explain reaction profile diagrams showing $\Delta H$ and activation energy                                                                                                                                                                                                                                | Should be used to explain how a catalyst works |
| Describe the application of the above factors to<br>the danger of explosive combustion with fine<br>powders (e.g. flour mills) and gases (e.g. methane<br>in mines)                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                          | Not required specifically                      |
| Devise and evaluate a suitable method for<br>investigating the effect of a given variable on the<br>rate of a reaction                                                                                                                                                                                                                                                              | 3.9 describe experiments to investigate the effects of changes in surface area of a solid, concentration of a solution, temperature and the use of a catalyst on the rate of a reaction                                                                                                                                  | Treatment of these topics is similar.          |
| Demonstrate knowledge and understanding of a<br>practical method for investigating the rate of a<br>reaction involving gas evolution<br>Interpret data obtained from experiments concerned<br>with rate of reaction                                                                                                                                                                 | <i>3.15 practical: investigate the effect of changing the surface area of marble chips and of changing the concentration of hydrochloric acid on the rate of reaction between marble chips and dilute hydrochloric acid</i>                                                                                              |                                                |

| Note: Candidates should be encouraged to use the     | 3.16 practical: investigate the effect of               |                                                   |
|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| term rate rather than speed.                         | different solids on the catalytic decomposition         |                                                   |
|                                                      | of hydrogen peroxide solution                           |                                                   |
| Describe and explain the role of light in            |                                                         | Not required for Edexcel                          |
| photochemical reactions and the effect of light      |                                                         |                                                   |
| on the rate of these reactions. (This should be      |                                                         |                                                   |
| linked to section 14.4.)                             |                                                         |                                                   |
| Describe the use of silver salts in photography as   |                                                         |                                                   |
| a process of reduction of silver ions to silver; and |                                                         |                                                   |
| photosynthesis as the reaction between carbon        |                                                         |                                                   |
| dioxide and water in the presence of chlorophyll     |                                                         |                                                   |
| and sunlight (energy) to produce glucose and         |                                                         |                                                   |
| <mark>oxygen</mark>                                  |                                                         |                                                   |
| 7.3 Reversible reactions                             |                                                         |                                                   |
| Understand that some chemical reactions can          | 3.17 know that some reactions are reversible            | Similar approach but reference to ammonium        |
| be reversed by changing the reaction conditions.     | and this is indicated by the symbol $\Rightarrow$ in    | chloride required rather than cobalt(II) chloride |
| (Limited to the effects of heat and water on         | equations                                               |                                                   |
| hydrated and anhydrous copper(II) sulfate and        | 3.18 describe reversible reactions such as the          |                                                   |
| cobalt(II) chloride.) (Concept of equilibrium is     | dehydration of hydrated copper(II) sulfate              |                                                   |
| <b>not</b> required.)                                | and the effect of heat on ammonium chloride             |                                                   |
| Demonstrate knowledge and understanding of           | 3.19C know that a reversible reaction                   | Treatment of these topics is similar.             |
| the concept of equilibrium                           | can reach dynamic equilibrium in a                      | ·                                                 |
|                                                      | sealed container                                        |                                                   |
|                                                      | 3.20C know that the characteristics of a                |                                                   |
|                                                      | reaction at dynamic equilibrium are:                    |                                                   |
|                                                      | $\cdot$ the forward and reverse reactions               |                                                   |
|                                                      | occur at the same rate                                  |                                                   |
|                                                      | <ul> <li>the concentrations of reactants and</li> </ul> |                                                   |
|                                                      | products remain constant.                               |                                                   |
| Predict the effect of changing the conditions        | 3.22C know the effect of changing either                | Similar approach but effect of concentration not  |
| (concentration, temperature and pressure) on         | temperature or pressure on the position                 | required                                          |
| other reversible reactions                           | of equilibrium in a reversible reaction:                |                                                   |
|                                                      | • an increase (or decrease) in                          |                                                   |
|                                                      | temperature shifts the position of                      |                                                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>equilibrium in the direction of the<br/>endothermic (or exothermic) reaction <ul> <li>an increase (or decrease) in pressure</li> <li>shifts the position of equilibrium in</li> <li>the direction that produces fewer (or</li> <li>more) moles of gas</li> </ul> </li> <li>References to Le Chatelier's principle are<br/>not required</li> <li>3.21C understand why a catalyst does<br/>not affect the position of equilibrium in a<br/>reversible reaction</li> </ul> |                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 7.4 Redox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |
| Define oxidation and reduction in terms of oxygen<br>loss/gain. (Oxidation state limited to its use<br>to name ions, e.g. iron(II), iron(III), copper(II),<br>manganate(VII).)<br>Define redox in terms of electron transfer<br>Define oxidising agent as a substance which<br>oxidises another substance during a redox<br>reaction. Define reducing agent as a substance<br>which reduces another substance during a redox<br>reaction.<br>Identify oxidising agents and reducing agents<br>from simple equations | <ul> <li>2.20 understand the terms:</li> <li>oxidation</li> <li>reduction</li> <li>redox</li> <li>oxidising agent</li> <li>reducing agent</li> <li>in terms of gain or loss of oxygen and loss or gain of electrons.</li> </ul>                                                                                                                                                                                                                                                  | The tern <i>oxidation state</i> is not required but<br>otherwise a similar approach |
| Identify redox reactions by changes in oxidation<br>state and by the colour changes involved when<br>using acidified potassium manganate(VII), and<br>potassium iodide. (Recall of equations involving<br>KMn04 is not required.)                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not required                                                                        |

## 8 Acids, bases and salts

| Cambridge                                                                                                                                    | Edexcel                                                                                                                                                                                                                                                                                                                                             | Notes                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 8.1 The characteristic properties of acids and bases                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |                                                                        |
| Describe the characteristic properties of acids<br>as reactions with metals, bases, carbonates and<br>effect on litmus and methyl orange     | <ul> <li>2.37 describe the reactions of hydrochloric acid, sulfuric acid and nitric acid with metals, bases and metal carbonates (excluding the reactions between nitric acid and metals) to form salts</li> <li>2.28 describe the use of litmus, phenolphthalein and methyl orange to distinguish between acidic and alkaline solutions</li> </ul> | Treatment of these topics is similar.                                  |
| Describe the characteristic properties of bases as<br>reactions with acids and with ammonium salts<br>and effect on litmus and methyl orange | 2.32 know that alkalis can neutralise acids                                                                                                                                                                                                                                                                                                         | Reaction of ammonia with alkalis only required in test for ammonia gas |
| Describe neutrality and relative acidity and<br>alkalinity in terms of pH measured using<br>universal indicator paper (whole numbers only)   | <ul> <li>2.29 understand how to use the pH scale, from 0–14, can be used to classify solutions as strongly acidic (0–3), weakly acidic (4–6), neutral (7), weakly alkaline (8–10) and strongly alkaline (11–14)</li> <li>2.30 describe the use of universal indicator to measure the approximate pH value of an aqueous solution</li> </ul>         | Treatment of these topics is similar.                                  |
| Describe and explain the importance of<br>controlling acidity in soil                                                                        |                                                                                                                                                                                                                                                                                                                                                     | Not required as a specific example                                     |
|                                                                                                                                              | 2.31 know that acids in aqueous solution are<br>a source of hydrogen ions and alkalis in a<br>aqueous solution are a source of hydroxide<br>ions                                                                                                                                                                                                    |                                                                        |

| Define acids and bases in terms of proton             | 2.35 understand acids and bases in terms of                 | Treatment of these topics is similar.               |
|-------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|
| transfer, limited to aqueous solutions                | proton transfer                                             |                                                     |
|                                                       | 2.36 understand that an acid is a proton                    |                                                     |
|                                                       | donor and a base is a proton acceptor                       |                                                     |
| Describe the meaning of week and strong aside         |                                                             | Not required for Edoycal                            |
| beschibe the meaning of weak and strong actus         |                                                             |                                                     |
| and bases                                             |                                                             |                                                     |
| 8.2 Types of oxides                                   |                                                             |                                                     |
| Classify oxides as either acidic or basic, related to | 2.38 know that metal oxides, metal                          | Treatment of these topics is similar.               |
| metallic and non-metallic character                   | hydroxides and ammonia can act as bases.                    | ·                                                   |
|                                                       | and that alkalis are bases that are soluble in              |                                                     |
|                                                       | water                                                       |                                                     |
|                                                       | Water                                                       |                                                     |
|                                                       |                                                             |                                                     |
|                                                       | 1.20 understand now to use electrical                       |                                                     |
|                                                       | conductivity and the acid-base character of                 |                                                     |
|                                                       | oxides to classify elements as metals or non-               |                                                     |
|                                                       | metals                                                      |                                                     |
| Further classify other oxides as neutral or           |                                                             | Not required for Edexcel                            |
| amphoteric                                            |                                                             |                                                     |
|                                                       | 2.11 describe the combustion of elements in                 | Details required Relate to evides formed            |
|                                                       | 2.11 describe the combustion of elements in                 | Details required. Relate to oxides formed.          |
|                                                       |                                                             |                                                     |
|                                                       | sulfur                                                      |                                                     |
| 8.3 Preparation of salts                              |                                                             |                                                     |
|                                                       | 2.34 know the general rules for predicting                  | Useful knowledge as this section requires students  |
|                                                       | the solubility of ionic compounds in water:                 | to have an appreciation of which salts/reagents are |
|                                                       | · common sodium, potassium and                              | soluble/insoluble                                   |
|                                                       | ammonium compounds are soluble                              | soluble/insoluble                                   |
|                                                       | · all nitratos aro solublo                                  |                                                     |
|                                                       |                                                             |                                                     |
|                                                       | · common chlorides are soluble, except                      |                                                     |
|                                                       | those of silver and lead(II)                                |                                                     |
|                                                       | <ul> <li>common sulfates are soluble, except for</li> </ul> |                                                     |
|                                                       | those of barium, calcium and lead(II)                       |                                                     |
|                                                       | common carbonates are insoluble, except                     |                                                     |
|                                                       | for those of sodium notassium and                           |                                                     |
|                                                       |                                                             |                                                     |
|                                                       | ammonium                                                    |                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>common hydroxides are insoluble except<br/>for those of sodium, potassium and calcium</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (calcium hydroxide is slightly soluble).                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |
| Demonstrate knowledge and understanding of<br>preparation, separation and purification of salts<br>as examples of some of the techniques specified<br>in section 2.2.2 and the reactions specified in<br>section 8.1<br>Demonstrate knowledge and understanding of<br>the preparation of insoluble salts by precipitation<br>Suggest a method of making a given salt from<br>a suitable starting material, given appropriate<br>information                                      | <ul> <li>2.39 describe an experiment to prepare a pure, dry sample of a soluble salt, starting from an insoluble reactant</li> <li>2.40C describe an experiment to prepare a pure, dry sample of a soluble salt, starting from an acid and alkali</li> <li>2.33C describe how to carry out an acid-alkali titration</li> <li>2.41C describe an experiment to prepare a pure, dry sample of an experiment to prepare a pure, dry sample of a soluble salt.</li> </ul> | Treatment of these topics is similar.                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | insoluble salt, starting from two soluble                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.42 practical: prepare a sample of pure, dry<br>hydrated copper(II) sulfate crystals starting<br>from copper(II) oxide                                                                                                                                                                                                                                                                                                                                              | Specific practicals required                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.43C practical: prepare a sample of<br>pure, dry lead(II) sulfate                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                |
| 8.4 Identification of ions and gases                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                |
| Describe the following tests to identify:<br><i>aqueous cations</i> :<br>aluminium, ammonium, calcium, chromium(III),<br>copper(II), iron(II), iron(III) and zinc (using<br>aqueous sodium hydroxide and aqueous<br>ammonia as appropriate). (Formulae of complex<br>ions are <b>not</b> required.)<br><i>cations</i> :<br>use of the flame test to identify lithium, sodium,<br>potassium and copper(II)<br><i>anions</i> :<br>carbonate (by reaction with dilute acid and then | <ul> <li>2.44 describe tests for these gases:</li> <li>hydrogen</li> <li>oxygen</li> <li>carbon dioxide</li> <li>ammonia</li> <li>chlorine.</li> <li>2.45 describe how to carry out a flame test</li> <li>2.46 know the colours formed in flame tests for these cations:</li> <li>Li+ is red</li> <li>Na+ is yellow</li> <li>K+ is lilac</li> </ul>                                                                                                                  | Some differences in the ions/gases for which tests<br>required. The use of aqueous ammonia to<br>distinguish between ions in aqueous solution not<br>required. |

| limewater), chloride, bromide and iodide (by                  | · Cu <sub>2+</sub> is blue-green.                                                 |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------|
| reaction under acidic conditions with aqueous                 | 2.47 describe tests for these cations:                                            |
| silver nitrate), nitrate (by reduction with                   | $\cdot$ NH <sub>4+</sub> using sodium hydroxide solution and                      |
| aluminium), sulfate (by reaction under acidic                 | identifying the gas evolved                                                       |
| conditions with aqueous barium ions) and <mark>sulfite</mark> | · Cu <sub>2+</sub> , Fe <sub>2+</sub> and Fe <sub>3+</sub> using sodium hydroxide |
| (by reaction with dilute acids and then aqueous               | solution. 2.48 describe tests for these                                           |
| potassium manganate(VII))                                     | anions:                                                                           |
| gases:                                                        | · Cl-, Br- and I- using acidified silver nitrate                                  |
| ammonia (using damp red litmus paper),                        | solution                                                                          |
| carbon dioxide (using limewater), chlorine                    | SO <sub>42</sub> - using acidified barium chloride                                |
| (using damp litmus paper), hydrogen (using                    | solution                                                                          |
| lighted splint), oxygen (using a glowing splint),             | CO <sub>32</sub> - using hydrochloric acid and                                    |
| and sulfur dioxide (using aqueous potassium                   | identifying the gas evolved.                                                      |
| manganate(VII))                                               |                                                                                   |

#### 9 The Periodic Table

| understand how elements are arranged<br>Periodic Table:<br>rder of atomic number<br>roups and periods. |                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                        |                                                                                                                                                                                                                                                                                                            |
| dentify an element as a metal or a non-<br>according to its position in the Periodic                   | Similar understanding required                                                                                                                                                                                                                                                                             |
| understand how the electronic                                                                          |                                                                                                                                                                                                                                                                                                            |
| juration of a main group element is                                                                    |                                                                                                                                                                                                                                                                                                            |
|                                                                                                        | nderstand how elements are arranged<br>Periodic Table:<br>der of atomic number<br>oups and periods.<br>lentify an element as a metal or a non-<br>according to its position in the Periodic<br>nderstand how the electronic<br>iration of a main group element is<br>to its position in the Periodic Table |

| 9.3 Group properties                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Describe lithium, sodium and potassium in Group I as<br>a collection of relatively soft metals showing a trend<br>in melting point, density and<br>reaction with water                                  | <ul> <li>2.1 understand how the similarities in the reactions of these elements with water provide evidence for their recognition as a family of elements</li> <li>2.2 understand how the differences between the reactions of these elements with air and water provide evidence for the trend in reactivity in Group 1</li> <li>2.4C explain the trend in reactivity in Group 1 in terms of electronic configurations</li> </ul> | Emphasis on understanding and explanations rather than description |
| Predict the properties of other elements in Group I, given data, where appropriate                                                                                                                      | 2.3 use knowledge of trends in Group 1 to predict the properties of other alkali metals                                                                                                                                                                                                                                                                                                                                            |                                                                    |
| Describe the halogens, chlorine, bromine and<br>iodine in Group VII, as a collection of diatomic<br>non-metals showing a trend in colour and density<br>and state their reaction with other halide ions | <ul> <li>2.5 know the colours, physical states (at room temperature) and trends in physical properties of these elements</li> <li>2.7 understand how displacement reactions involving halogens and halides provide evidence for the trend in reactivity in Group 7</li> <li>2.8C explain the trend in reactivity in Group 7 in terms of electronic configurations</li> </ul>                                                       | Emphasis on understanding and explanations rather than description |
| Predict the properties of other elements in Group VII, given data where appropriate                                                                                                                     | 2.6 use knowledge of trends in Group 7 to predict the properties of other halogens                                                                                                                                                                                                                                                                                                                                                 |                                                                    |
| Identify trends in Groups, given information                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not required except for Group 1 and 7                              |
| 9 4 Transition elements                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not required for Edexcel Syllabus                                  |
| Describe the transition elements as a collection                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| of metals having high densities high melting                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| points and forming coloured compounds. and                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| which, as elements and compounds, often act as                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |

| catalysts                                           |                                            |                            |
|-----------------------------------------------------|--------------------------------------------|----------------------------|
| Know that transition elements have variable         |                                            |                            |
| oxidation states                                    |                                            |                            |
| 9.5 Noble gases                                     |                                            |                            |
| Describe the noble gases, in Group VIII or 0, as    | 1.24 understand why the noble gases (Group |                            |
| being unreactive, monoatomic gases and explain this | 0) do not readily react                    |                            |
| in terms of electronic structure                    |                                            |                            |
| State the uses of the noble gases in providing an   |                                            | Specific uses not required |
| inert atmosphere, i.e. argon in lamps, helium for   |                                            |                            |
| filling balloons                                    |                                            |                            |

#### 10 Metals

| Cambridge                                                                                                                                                                                                        | Edexcel                                                                                                                                                 | Notes                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 10.1 Properties of metals                                                                                                                                                                                        |                                                                                                                                                         |                                                                                                 |
| List the general physical properties of metals                                                                                                                                                                   | 1.20 understand how to use electrical conductivity and the acid-base character of oxides to classify elements as metals or non-metals                   |                                                                                                 |
| Describe the general chemical properties of metals, e.g. reaction with dilute acids and reaction with oxygen                                                                                                     |                                                                                                                                                         | see 'reactivity series' for reactions of metals with acids. Reactions with oxygen not required. |
| Explain in terms of their properties why alloys are used instead of pure metals                                                                                                                                  | 2.27C explain why alloys are harder than pure metals                                                                                                    |                                                                                                 |
| Identify representations of alloys from diagrams of structure                                                                                                                                                    |                                                                                                                                                         | Students should be expected to do this                                                          |
| 10.2 Reactivity series                                                                                                                                                                                           |                                                                                                                                                         |                                                                                                 |
| <ul> <li>Place in order of reactivity: potassium, sodium, calcium, magnesium, zinc, iron, (hydrogen) and copper, by reference to the reactions, if any, of the metals with:</li> <li>— water or steam</li> </ul> | 2.17 know the order of reactivity of these<br>metals: potassium, sodium, lithium, calcium,<br>magnesium, aluminium, zinc, iron, copper,<br>silver, gold | Some differences in metals required but overall a similar approach.                             |

| — dilute hydrochloric acid                                             | 2.15 understand how metals can be arranged                                                                                                                   | Position of hydrogen relevant to electrolysis so                                      |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| and the <mark>reduction of their oxides with carbon</mark>             | in a reactivity series based on their reactions with:                                                                                                        | should be included                                                                    |
| Deduce an order of reactivity from a given set of experimental results | <ul> <li>water</li> <li>dilute hydrochloric or sulfuric acid.</li> </ul>                                                                                     | Carbon not mentioned specifically here but included in 'extraction of metals' section |
|                                                                        | 2.21 practical: investigate reactions between<br>dilute hydrochloric and sulfuric acids and<br>metals (e.g. magnesium, zinc and iron)                        |                                                                                       |
| Describe the reactivity series as related to the                       | 2.16 understand how metals can be arranged                                                                                                                   |                                                                                       |
| tendency of a metal to form its positive ion,                          | in a reactivity series based on their                                                                                                                        |                                                                                       |
| illustrated by its reaction, if any, with:                             | · metals and metal oxides                                                                                                                                    |                                                                                       |
| - the aqueous ions                                                     | • metals and aqueous solutions of metal                                                                                                                      |                                                                                       |
| - the oxides                                                           | salts                                                                                                                                                        |                                                                                       |
|                                                                        |                                                                                                                                                              |                                                                                       |
| Describe and explain the estion of heat on the                         | 2.12 describe the formation of earbon disvide                                                                                                                |                                                                                       |
| budrovides, carbonates and nitrates of the listed                      | from the thermal decomposition of metal                                                                                                                      | relation to reactivity series not required                                            |
| metals                                                                 | carbonates, including copper(II) carbonate                                                                                                                   |                                                                                       |
| Account for the apparent unreactivity of                               |                                                                                                                                                              | Unreactivity of aluminium should be known –                                           |
| aluminium in terms of the oxide layer which                            |                                                                                                                                                              | included in reactivity series above.                                                  |
| adheres to the metal                                                   |                                                                                                                                                              |                                                                                       |
| 10.3 Extraction of metals                                              |                                                                                                                                                              |                                                                                       |
|                                                                        | 2.22C know that most metals are<br>extracted from ores found in the Earth's<br>crust and that unreactive metals are<br>often found as the uncombined element |                                                                                       |
| Describe the ease in obtaining metals from their                       | 2.23C explain how the method of                                                                                                                              |                                                                                       |
| ores by relating the elements to the reactivity                        | extraction of a metal is related to its                                                                                                                      |                                                                                       |
| series                                                                 | position in the reactivity series,                                                                                                                           |                                                                                       |
|                                                                        | illustrated by carbon extraction for iron                                                                                                                    |                                                                                       |
| Describe and state the acceptial reactions in the                      | and electrolysis for aluminium                                                                                                                               | Constifie details and as wined                                                        |
| extraction of iron from hematite                                       |                                                                                                                                                              | Specific details not required                                                         |
| Describe the conversion of iron into steel using                       |                                                                                                                                                              | Not required                                                                          |

| basic oxides and oxygen                                                                                                                                                                                |                                                                                                                                                                                                     |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                                                                                                                        | 2.24C be able to comment on a metal<br>extraction process, given appropriate<br>information<br>detailed knowledge of the processes<br>used in the extraction of a specific metal<br>is not required | Emphasis on understanding                   |
| Know that aluminium is extracted from the ore                                                                                                                                                          |                                                                                                                                                                                                     | Not required except an understanding of why |
| bauxite by electrolysis                                                                                                                                                                                |                                                                                                                                                                                                     | aluminium is extracted by electrolysis      |
| Describe in outline, the extraction of aluminium                                                                                                                                                       |                                                                                                                                                                                                     |                                             |
| from bauxite including the role of cryolite and                                                                                                                                                        |                                                                                                                                                                                                     |                                             |
| the reactions at the electrodes                                                                                                                                                                        |                                                                                                                                                                                                     |                                             |
| Discuss the advantages and disadvantages                                                                                                                                                               |                                                                                                                                                                                                     |                                             |
| of recycling metals, limited to iron/steel and                                                                                                                                                         |                                                                                                                                                                                                     |                                             |
| aluminium                                                                                                                                                                                              |                                                                                                                                                                                                     |                                             |
| Describe in outline, the extraction of zinc from                                                                                                                                                       |                                                                                                                                                                                                     |                                             |
| zinc blende                                                                                                                                                                                            |                                                                                                                                                                                                     |                                             |
| 10.4 Uses of metals                                                                                                                                                                                    |                                                                                                                                                                                                     |                                             |
| <ul> <li>Name the uses of aluminium:</li> <li>— in the manufacture of aircraft because of its strength and low density</li> <li>— in food containers because of its resistance to corrosion</li> </ul> | 2.25C explain the uses of aluminium,<br>copper, iron and steel in terms of their<br>properties<br>the types of steel will be limited to low-<br>carbon (mild), high-carbon and stainless            | Treatment of these topics is similar.       |
| Name the uses of copper related to its properties (electrical wiring and in cooking utensils)                                                                                                          |                                                                                                                                                                                                     |                                             |
| Name the uses of mild steel (car bodies and machinery) and stainless steel (chemical plant and cutlery)                                                                                                |                                                                                                                                                                                                     |                                             |
| Describe the idea of changing the properties of<br>iron by the controlled use of additives to form<br>steel alloys                                                                                     |                                                                                                                                                                                                     |                                             |

| Explain the uses of zinc for galvanising and for | use of Zinc in galvanising is required. Reference to |
|--------------------------------------------------|------------------------------------------------------|
| making brass                                     | brass not required                                   |

### 11 Air and water

| Cambridge                                                                                                                                                               | Edexcel                                                                                                                                                                                          | Notes                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 11.1 Water                                                                                                                                                              |                                                                                                                                                                                                  |                                                                                                                            |
| Describe chemical tests for water using <mark>cobalt(II)</mark><br>chloride and copper(II) sulfate                                                                      | 2.49 describe a test for the presence of water using anhydrous copper(II) sulfate                                                                                                                | Cobalt(II) chloride not required                                                                                           |
|                                                                                                                                                                         | 2.50 describe a physical test to show whether a sample of water is pure                                                                                                                          | Physical test also required                                                                                                |
| Describe, in outline, the treatment of the water supply in terms of filtration and chlorination                                                                         |                                                                                                                                                                                                  | Not required for Edexcel                                                                                                   |
| Name some of the uses of water in industry and<br>in the home                                                                                                           |                                                                                                                                                                                                  |                                                                                                                            |
| Discuss the implications of an inadequate supply of water, limited to safe water for drinking and                                                                       |                                                                                                                                                                                                  |                                                                                                                            |
| water for irrigating crops                                                                                                                                              |                                                                                                                                                                                                  |                                                                                                                            |
| 11.2 Air                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                            |
| State the composition of clean, dry air as being<br>approximately 78% nitrogen, 21% oxygen and<br>the remainder as being a mixture of noble gases<br>and carbon dioxide | 2.9 know the approximate percentages by volume of the four most abundant gases in dry air                                                                                                        |                                                                                                                            |
|                                                                                                                                                                         | 2.10 understand how to determine the<br>percentage by volume of oxygen in air using<br>experiments involving the reactions of metals<br>(e.g. iron) and non-metals (e.g. phosphorus)<br>with air | Emphasis on a practical approach and<br>understanding different methods for determining<br>the percentage of oxygen in air |
|                                                                                                                                                                         | 2.14 practical: determine the approximate percentage by volume of oxygen in air using a metal or a non-metal                                                                                     |                                                                                                                            |

| Describe the separation of oxygen and nitrogen from liquid air by fractional distillation                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          | Not required                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Name the common pollutants in the air as being<br>carbon monoxide, sulfur dioxide, oxides of nitrogen<br>and lead compounds                                                                                                                                                                                                                | <ul> <li>4.12 know the possible products of complete and incomplete combustion of hydrocarbons with oxygen in the air</li> <li>4.15 explain how the combustion of some impurities in hydrocarbon fuels results in the formation of sulfur dioxide</li> </ul>             | Reference to nitrogen oxides formation below,<br>Reference to lead compounds is not required. |
| State the source of each of these pollutants:<br>— carbon monoxide from the incomplete<br>combustion of carbon-containing substances<br>— sulfur dioxide from the combustion of fossil<br>fuels which contain sulfur compounds<br>(leading to 'acid rain')<br>— oxides of nitrogen from car engines<br>— lead compounds from leaded petrol |                                                                                                                                                                                                                                                                          |                                                                                               |
| State the adverse effect of these common<br>pollutants on buildings and on health and discuss<br>why these pollutants are of global concern                                                                                                                                                                                                | 4.13 understand why carbon monoxide is<br>poisonous, in terms of its effect on the<br>capacity of blood to transport oxygen<br><i>references to haemoglobin are not required</i><br>4.16 understand how sulfur dioxide and<br>oxides of nitrogen contribute to acid rain | Treatment of these topics is similar.                                                         |
| Describe and explain the presence of oxides<br>of nitrogen in car engines <mark>and their catalytic</mark><br><mark>removal</mark>                                                                                                                                                                                                         | 4.14 know that, in car engines, the<br>temperature reached is high enough to allow<br>nitrogen and oxygen from air to react,<br>forming oxides of nitrogen                                                                                                               | Catalytic converters not required                                                             |
| State the conditions required for the rusting of iron                                                                                                                                                                                                                                                                                      | 2.18 know the conditions under which iron rusts                                                                                                                                                                                                                          | Treatment of these topics is similar.                                                         |
| Describe and explain methods of rust prevention,<br>specifically paint and other coatings to exclude<br>oxygen                                                                                                                                                                                                                             | <ul> <li>2.19 understand how the rusting of iron may be prevented by:</li> <li>barrier methods</li> <li>galvanising</li> <li>sacrificial protection.</li> </ul>                                                                                                          |                                                                                               |

| Describe and explain sacrificial protection in   |                                               |                                                     |
|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| terms of the reactivity series of metals and     |                                               |                                                     |
| galvanising as a method of rust prevention       |                                               |                                                     |
| 11.3 Nitrogen and fertilisers                    |                                               | Not required for Edexcel                            |
| Describe the need for nitrogen-, phosphorus- and |                                               |                                                     |
| potassium-containing fertilisers                 |                                               |                                                     |
| Describe and explain the essential conditions    |                                               |                                                     |
| for the manufacture of ammonia by the Haber      |                                               |                                                     |
| process including the sources of the hydrogen    |                                               |                                                     |
| and nitrogen, i.e. hydrocarbons or steam and air |                                               |                                                     |
| Describe the displacement of ammonia from its    |                                               |                                                     |
| <mark>salts</mark>                               |                                               |                                                     |
| 11.4 Carbon dioxide and methane                  |                                               |                                                     |
| State that carbon dioxide and methane are        | 2.13 know that carbon dioxide is a            | references to methane as a greenhouse gas not       |
| greenhouse gases and explain how they may        | greenhouse gas and that increasing amounts    | required.                                           |
| contribute to climate change                     | in the atmosphere may contribute to climate   |                                                     |
|                                                  | change                                        |                                                     |
| State the formation of carbon dioxide:           | 2.12 describe the formation of carbon dioxide | All reactions except respiration also included in   |
| — as a product of complete combustion of         | from the thermal decomposition of metal       | Edexcel syllabus – reaction with acids covered in a |
| carbon-containing substances                     | carbonates, including copper(11) carbonate    | separate section                                    |
|                                                  |                                               |                                                     |
| — as a product of the reaction between an acid   |                                               |                                                     |
| and a carbonate                                  |                                               |                                                     |
| — from the thermal decomposition of a            |                                               |                                                     |
|                                                  |                                               |                                                     |
| Describe the carbon cycle, in simple terms, to   |                                               | Not required                                        |
| include the processes of combustion, respiration |                                               |                                                     |
| and photosynthesis                               |                                               |                                                     |
| State the sources of methane, including          |                                               |                                                     |
| decomposition of vegetation and waste gases      |                                               |                                                     |
| from digestion in animals                        |                                               |                                                     |

## 12 Sulfur

| Cambridge                                                        | Edexcel | Notes                    |
|------------------------------------------------------------------|---------|--------------------------|
| Name some sources of sulfur                                      |         | Not required for Edexcel |
| Name the use of sulfur in the manufacture of sulfuric            |         |                          |
| acid                                                             |         |                          |
| Describe the manufacture of sulfuric acid by the                 |         |                          |
| Contact process, including essential conditions                  |         |                          |
| and reactions                                                    |         |                          |
| Describe the properties and uses of dilute and                   |         |                          |
| concentrated sulfuric acid                                       |         |                          |
| <mark>State the uses of sulfur dioxide as a bleach in the</mark> |         |                          |
| manufacture of wood pulp for paper and as a                      |         |                          |
| food preservative (by killing bacteria)                          |         |                          |

## 13 Carbonates

| Cambridge                                         | Edexcel | Notes                    |
|---------------------------------------------------|---------|--------------------------|
| 13.1 Carbonates                                   |         | Not required for Edexcel |
| Describe the manufacture of lime (calcium oxide)  |         |                          |
| from calcium carbonate                            |         |                          |
| (limestone) in terms of thermal decomposition     |         |                          |
| Name some uses of lime and slaked lime such as in |         |                          |
| treating acidic soil and neutralising             |         |                          |
| acidic industrial waste products, e.g. flue gas   |         |                          |
| desulfurisation                                   |         |                          |
| Name the uses of calcium carbonate in the         |         |                          |
| manufacture of iron and cement                    |         |                          |

# 14 Organic chemistry

| Cambridge                                                                                                                                               | Edexcel                                                                                                                                                               | Notes                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 14.1                                                                                                                                                    |                                                                                                                                                                       |                                                                                                                                          |
| Name and draw the structures of methane,<br>ethane, ethene, ethanol, ethanoic acid and the<br>products of the reactions stated in sections<br>14.4–14.6 | 4.2 understand how to represent organic<br>molecules using empirical formulae,<br>molecular formulae, general formulae,<br>structural formulae and displayed formulae | More general approach required and<br>students should understand the difference<br>between the ways of representing organic<br>molecules |

| State the type of compound present, given a<br>chemical name ending in <i>-ane</i> , <i>-ene</i> , <i>-ol</i> , or <i>-oic</i><br><i>acid</i> or a molecular structure<br>Name and draw the structures of the unbranched<br>alkanes, alkenes (not <i>cis-trans</i> ), alcohols and<br>acids containing up to four carbon atoms per<br>molecule | <ul> <li>4.4 understand how to name compounds relevant to this specification using the rules of International Union of Pure and Applied Chemistry (IUPAC) nomenclature students will be expected to name compounds containing up to six carbon atoms</li> <li>4.21 understand how to draw the structural and displayed formulae for alkanes with up to five carbon atoms in the molecule, and to name the unbranched-chain isomers</li> <li>4.26 understand how to draw the structural and displayed formulae for alkenes with up to four carbon atoms in the molecule, and name the unbranched-chain isomers <i>knowledge of cis/trans or E/Z notation is not required</i></li> <li>4.30C understand how to draw structural and displayed formulae for mulae for methanol, ethanol, propanol (<i>propan-1-ol only</i>), and name each compound the names propanol and butanol are acceptable</li> <li>4.35C understand how to draw structural and displayed formulae for methanol, ethanol, propanol (<i>propan-1-ol only</i>), and name each compound the names propanol and butanol are acceptable</li> <li>4.35C understand how to draw structural and displayed formulae for methanol, ethanol, propanol (<i>propan-1-ol only</i>), and name each compound the names propanol and butanol are acceptable</li> </ul> | Ability to name larger molecules required |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |

| Name and draw the structural formulae of the<br>esters which can be made from unbranched<br>alcohols and carboxylic acids, each containing up<br>to four carbon atoms                       |                                                                                                                                                                                      | See 'esters' section below                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                             | 4.1 know that a hydrocarbon is a compound of hydrogen and carbon only                                                                                                                |                                                      |
|                                                                                                                                                                                             | 4.5 understand how to write the possible<br>structural and displayed formulae of an<br>organic molecule given its molecular<br>formula                                               | More emphasis on understanding organic<br>Chemistry  |
|                                                                                                                                                                                             | 4.6 understand how to classify reactions of organic compounds as substitution, addition and combustion <i>knowledge of reaction mechanisms is not required</i>                       |                                                      |
| 14.2 Fuels                                                                                                                                                                                  |                                                                                                                                                                                      |                                                      |
| Name the fuels: coal, natural gas and petroleum                                                                                                                                             |                                                                                                                                                                                      | Not required                                         |
| Name methane as the main constituent of natural gas                                                                                                                                         |                                                                                                                                                                                      |                                                      |
| Describe petroleum as a mixture of hydrocarbons<br>and its separation into useful fractions by<br>fractional distillation                                                                   | <ul><li>4.7 know that crude oil is a mixture of hydrocarbons</li><li>4.8 describe how the industrial process of fractional distillation separates crude oil into fractions</li></ul> | The term 'crude oil' is used rather than 'petroleum' |
| Describe the properties of molecules within a fraction                                                                                                                                      | 4.10 know the trend in colour, boiling point<br>and viscosity of the main fractions                                                                                                  |                                                      |
| Name the uses of the fractions as:<br>— refinery gas for bottled gas for heating and<br>cooking<br>— gasoline fraction for fuel (petrol) in cars<br>— naphtha fraction for making chemicals | 4.9 know the names and uses of the main fractions obtained from crude oil: refinery gases, gasoline, kerosene, diesel, fuel oil and bitumen                                          | Similar approach but some differences in fractions   |

| <ul> <li>kerosene/paraffin fraction for jet fuel</li> <li>diesel oil/gas oil for fuel in diesel engines</li> <li>fuel oil fraction for fuel for ships and home</li> <li>heating systems</li> <li>lubricating fraction for lubricants, waxes and</li> <li>Polishes</li> <li>bitumen for making reads</li> </ul> |                                                                                                                                                                              |                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 14.3 Homologous series                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                                       |
| Describe the concept of homologous series as<br>a 'family' of similar compounds with similar<br>chemical properties due to the presence of the<br>same functional group                                                                                                                                        | 4.3 know what is meant by the terms homologous series, functional group and isomerism                                                                                        | Treatment of these topics is similar. |
| Describe the general characteristics of a homologous series                                                                                                                                                                                                                                                    |                                                                                                                                                                              |                                       |
| Recall that the compounds in a homologous series have the same general formula                                                                                                                                                                                                                                 |                                                                                                                                                                              |                                       |
| Describe and identify structural isomerism                                                                                                                                                                                                                                                                     |                                                                                                                                                                              |                                       |
| 14.4 Alkanes                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |                                       |
|                                                                                                                                                                                                                                                                                                                | 4.19 know the general formula for alkanes                                                                                                                                    |                                       |
| Describe the properties of alkanes (exemplified<br>by methane) as being generally unreactive,<br>except in terms of burning                                                                                                                                                                                    | 4.12 know the possible products of complete and incomplete combustion of hydrocarbons with oxygen in the air                                                                 | Unreactivity not stressed             |
| Describe the bonding in alkanes                                                                                                                                                                                                                                                                                |                                                                                                                                                                              | Covered in covalent bonding section   |
| Describe substitution reactions of alkanes with chlorine                                                                                                                                                                                                                                                       | 4.22 describe the reactions of alkanes with halogens in the presence of ultraviolet radiation, limited to mono-substitution knowledge of reaction mechanisms is not required |                                       |
| 14.5 Alkenes                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |                                       |

|                                                                                                    | 4.23 know that alkenes contain the                                                                                                     |                                                                                            |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                                                    | functional group >C=C<                                                                                                                 |                                                                                            |
|                                                                                                    | 4.24 know the general formula for alkenes                                                                                              |                                                                                            |
| Describe the manufacture of alkenes and of hydrogen by cracking                                    | 4.17 describe how long-chain alkanes are converted to alkenes and shorter-chain                                                        |                                                                                            |
|                                                                                                    | alkanes by catalytic cracking (using silica or<br>alumina as the catalyst and a temperature<br>in the range of 600–700 °C)             |                                                                                            |
|                                                                                                    | 4.18 explain why cracking is necessary, in<br>terms of the balance between supply and<br>demand for different fractions                |                                                                                            |
| Distinguish between saturated and unsaturated<br>hydrocarbons:<br>— from molecular structures      | <ul><li>4.20 explain why alkanes are classified as saturated hydrocarbons</li><li>4.25 explain why alkenes are classified as</li></ul> | Treatment of these topics is similar.                                                      |
| — by reaction with aqueous bromine                                                                 | unsaturated hydrocarbons<br>4.28 describe how bromine water can be<br>used to distinguish between an alkane and<br>an alkene           |                                                                                            |
| Describe the properties of alkenes in terms of addition reactions with bromine, hydrogen and steam | 4.27 describe the reactions of alkenes with bromine to produce dibromoalkanes                                                          | Reaction with hydrogen not required.<br>Reaction with steam covered in alcohols<br>section |
| Describe the formation of poly(ethene) as an                                                       |                                                                                                                                        | See 'polymers' section below                                                               |
| example of addition polymerisation of monomer<br>units                                             |                                                                                                                                        |                                                                                            |
| 14.6 Alcohols                                                                                      |                                                                                                                                        |                                                                                            |
|                                                                                                    | 4.29C know that alcohols contain the functional group –OH                                                                              |                                                                                            |
| Describe the manufacture of ethanol by fermentation and by<br>the catalytic addition of            | 4.32C know that ethanol can be manufactured by:                                                                                        |                                                                                            |
|                                                                                                    | presence of a phosphoric acid catalyst                                                                                                 |                                                                                            |
|                                                                                                    | <ul> <li>temperature of about 500 °C and a pressure of about 60–70 atm</li> <li>the fermentation of glucose, in the</li> </ul>         |                                                                                            |
|                                                                                                    | absence of air, at an optimum                                                                                                          |                                                                                            |

|                                                                                                                  | temperature of about 30 °C and using                                                                                                                                                                                                                                                                      |                                            |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                  | the enzymes in yeast                                                                                                                                                                                                                                                                                      |                                            |
|                                                                                                                  | 4.33C understand the reasons for                                                                                                                                                                                                                                                                          |                                            |
|                                                                                                                  | fermentation, in the absence of air, and                                                                                                                                                                                                                                                                  |                                            |
|                                                                                                                  | at an optimum temperature                                                                                                                                                                                                                                                                                 |                                            |
| Outline the advantages and disadvantages of<br>these two methods of manufacturing ethanol                        |                                                                                                                                                                                                                                                                                                           | Not required                               |
| Describe the properties of ethanol in terms of burning                                                           | <ul> <li>4.31C know that ethanol can be oxidised by:</li> <li>burning in air or oxygen (complete combustion)</li> <li>reaction with oxygen in the air to form ethanoic acid (microbial oxidation)</li> <li>heating with potassium dichromate(VI) in dilute sulfuric acid to form ethanoic acid</li> </ul> | Additional reactions required              |
| Name the uses of ethanol as a solvent and as a fuel                                                              |                                                                                                                                                                                                                                                                                                           | Specific uses not required                 |
| 14.7 Carboxylic acids                                                                                            |                                                                                                                                                                                                                                                                                                           |                                            |
|                                                                                                                  | 4.34C know that carboxylic acids<br>contain the COOH functional group                                                                                                                                                                                                                                     |                                            |
| Describe the properties of                                                                                       | 4.36C describe the reactions of                                                                                                                                                                                                                                                                           | Emphasis on chemical properties            |
| aqueous ethanoic acid                                                                                            | aqueous solutions of carboxylic acids<br>with metals and metal carbonates                                                                                                                                                                                                                                 |                                            |
| Describe the formation of ethanoic acid by the oxidation of ethanol by fermentation and with acidified potassium | 4.31C know that ethanol can be<br>oxidised by:                                                                                                                                                                                                                                                            | Microbial oxidation required               |
| manganate(VII)                                                                                                   | • reaction with oxygen in the air to                                                                                                                                                                                                                                                                      | Different oxidising agent                  |
|                                                                                                                  | ovidation)                                                                                                                                                                                                                                                                                                |                                            |
|                                                                                                                  | · heating with potassium                                                                                                                                                                                                                                                                                  |                                            |
|                                                                                                                  | dichromate(VI) in dilute sulfuric acid to                                                                                                                                                                                                                                                                 |                                            |
|                                                                                                                  | form ethanoic acid                                                                                                                                                                                                                                                                                        |                                            |
| Describe ethanoic acid as a typical weak acid                                                                    |                                                                                                                                                                                                                                                                                                           | Classification of acids as strong/weak not |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                           | required                                   |

| Describe the reaction of a carboxylic acid with an alcohol in |                                           | Esters are a separate topic in Edexcel |
|---------------------------------------------------------------|-------------------------------------------|----------------------------------------|
| the presence of a catalyst to give an ester                   |                                           | syllabus – see below                   |
|                                                               | 4.37C know that vinegar is an aqueous     |                                        |
|                                                               | solution containing ethanoic acid         |                                        |
|                                                               | (g) Esters                                | More detailed knowledge and            |
|                                                               | 4.38C know that esters contain the        | understanding of Organic Chemistry     |
|                                                               | functional group -COO-                    | required.                              |
|                                                               | 4.39C know that ethyl ethanoate is the    |                                        |
|                                                               | ester produced when ethanol and           |                                        |
|                                                               | ethanoic acid react in the presence of    |                                        |
|                                                               | an acid catalyst                          |                                        |
|                                                               | 4.40C understand now to write the         |                                        |
|                                                               | ethyl ethanoate                           |                                        |
|                                                               | 4.41C understand how to write the         |                                        |
|                                                               | structural and displayed formulae of an   |                                        |
|                                                               | ester, given the name or formula of the   |                                        |
|                                                               | alcohol and carboxylic acid from which    |                                        |
|                                                               | it is formed and vice versa               |                                        |
|                                                               | 4.42C know that esters are volatile       |                                        |
|                                                               | compounds with distinctive smells and     |                                        |
|                                                               | are used as food flavourings and in       |                                        |
|                                                               | 4 430 practical: prepare a sample of an   |                                        |
|                                                               | ester such as ethyl ethanoate             |                                        |
| 14.8 Polymers                                                 |                                           |                                        |
| 14.8.1 Polymers                                               |                                           |                                        |
| Define polymers as large                                      | 4.44 know that an addition polymer is     |                                        |
| molecules built up from small                                 | formed by joining up many small molecules |                                        |
| units (monomers)                                              | called monomers                           |                                        |
| Understand that different polymers have different units       |                                           | Covered below.                         |
| and/or different linkages                                     |                                           |                                        |
| 14.8.2 Synthetic polymers                                     |                                           |                                        |

| Name some typical uses of plastics and of man-made fibres         |                                                                                       | Specific uses not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| such as nylon and <i>Terylene</i>                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Describe the pollution problems caused by non-                    | 4.47 explain problems in the disposal of                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| biodegradable plastics                                            | addition polymers, including:                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | • their inertness and inability to biodegrade                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | <ul> <li>the production of toxic gases when they</li> </ul>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | are burned.                                                                           | The state of the sector is the state in the state of the sector is the state of the |
| Deduce the structure of the polymer product from a given          | 4.45 understand now to draw the repeat                                                | reatment of these topics is similar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| alkene and vice verso                                             | noly(ethene) noly(propene)                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | poly(chloroethene) and                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | (poly)tetrafluoroethene                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | 4.46 understand how to deduce the                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | structure of a monomer from the repeat unit                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | of an addition polymer and vice versa                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Explain the differences between condensation and addition         |                                                                                       | An understanding of this would be expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| polymerisation                                                    |                                                                                       | from the discussions of the two types of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                   |                                                                                       | polymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Describe the formation of nylon (a polyamide) and <i>Terylene</i> | 4.48C know that condensation                                                          | Only polyesters required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (a polyester) by condensation polymerisation, the structure       | polymerisation, in which a dicarboxylic                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of                                                                | acid reacts with a diol, produces a                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nylon being represented as:                                       | polyester and water                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | 4.49C understand now to write the                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | structural and displayed formula of a polyostor, showing the repeat unit              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ^ ^ ^ ^ <b>^</b>                                                  | given the formulae of the monomers                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ╽╶─╏──╔──╔──╷──╏──╔╗╾╏──╷──╏──┆──╷                                | from which it is formed including the                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | reaction of ethanedioic acid and                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the structure of $	au$ and the structure of                   | ethanediol:                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the structure of Terylene as:                                 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   | $nH-O-C-C-O-H + nH-O-CH_2CH_2-O-H \longrightarrow \pm C-C-O-CH_2CH_2-O\pm_n + 2nH_2O$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                   |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Details of manufacture and mechanisms of these            |                                              |                          |
|-----------------------------------------------------------|----------------------------------------------|--------------------------|
| polymensations are not required.)                         | 4.50C know that some polyesters.             |                          |
|                                                           | known as biopolyesters, are<br>biodegradable |                          |
| 14.8.3 Natural polymers                                   |                                              | Not required for Edexcel |
| Name proteins and carbohydrates                           |                                              |                          |
| as constituents of food                                   |                                              |                          |
| Describe proteins as possessing the same (amide) linkages |                                              |                          |
| as nylon but with different units                         |                                              |                          |
| Describe the structure of proteins as:                    |                                              |                          |
|                                                           |                                              |                          |
| Describe the hydrolysis of proteins to amino acids.       |                                              |                          |
| (Structures and names are not required.)                  |                                              |                          |
| Describe complex carbonydrates in terms of a large number |                                              |                          |
| sugar units, considered as HO - OH,                       |                                              |                          |
| joined together by condensation polymerisation, e.g.      |                                              |                          |
|                                                           |                                              |                          |
| Describe the hydrolysis of complex carbohydrates (e.g.    |                                              |                          |
| starch), by acids or enzymes to give simple sugars        |                                              |                          |
| Describe the fermentation of simple sugars to produce     |                                              |                          |
| ethanol (and carbon dioxide). (Candidates will not be     |                                              |                          |
| expected to give                                          |                                              |                          |
| the molecular formulae of sugars.)                        |                                              |                          |
| Describe, in outline, the usefulness of chromatography in |                                              |                          |
| separating and identifying the products of hydrolysis of  |                                              |                          |
| carbohydrates and proteins                                |                                              |                          |