Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE in
Chemistry (4CH1)
Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P71892A
Publications Code 4CH1_1C_MS_2301
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
1 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
particles should be close together and should fill from the bottom of the box, most particles should touch with a minimum of 2 random rows of particles \\
solid
\end{tabular} \& \begin{tabular}{l}
ALLOW particles filling the whole box \\
IGNORE the size of the particles \\
REJECT a regular arrangement
\end{tabular} \& 1

1

\hline (b) \& solid to liquid melting solid to gas sublimation \& ALLOW subliming \& 2

\hline (c) \& | An explanation that links the two points. |
| :--- |
| M1 (particles / molecules have) more (kinetic) energy |
| M2 can overcome / break the (intermolecular) forces/forces (between water molecules) | \& | ALLOW hot water has more (kinetic) energy |
| :--- |
| ALLOW (particles / molecules) move faster |
| IGNORE vibrate more |
| ALLOW can overcome / break the bonds (between water molecules) OR to break away from one another OR to escape more easily |
| IGNORE references to collisions, activation energy or rate of reaction | \& 2

\hline \multicolumn{4}{|r|}{Total for question = 6}

\hline
\end{tabular}

Question number	Answer	Notes	Marks
2 (a)	$\text { B }\left(\mathrm{Cl}_{2}\right)$ A is not the correct answer as the symbol O is for atoms of oxygen not molecules C is not the correct answer as HCl is a compound D is not the correct answer as $\mathrm{H}_{2} \mathrm{O}$ is a compound		1
(b)	C (filtration) A is not the correct answer as crystallisation is not used to separate an insoluble solid from a liquid B is not the correct answer as evaporation will not separate an insoluble solid from a liquid D is not the correct answer as simple distillation is used to separate a solvent from a solution		1
(c)	fractional distillation	REJECT distillation REJECT simple distillation	1
(d) (i) (ii) (iii)	$\text { D (X(s) } \rightarrow X(a q))$ A is not the correct answer as (l) is not the correct final state symbol B is not the correct answer as (g) Is not the final state symbol C is not the correct answer as the state symbols are the wrong way round C (diffusion) A is not the correct answer as boiling does not occur in the beaker B is not the correct answer as condensing does not occur in the beaker D is not the correct answer as sublimation does not occur in the beaker M1 potassium / K ${ }^{+}$ M2 sulfate $/ \mathrm{SO}_{4}{ }^{2-}$	potassium sulfate scores 2 $\mathrm{K}_{2} \mathrm{SO}_{4} \text { scores } 2$ KSO_{4} alone scores 1 ALLOW in either order If name correct ignore incorrect formula	1
Total for question = 7			

Question number	Answer	Notes	Marks
3 (a) (i) (ii)	argon / Ar C (nitrogen) A is not correct because nitrogen is more abundant than carbon dioxide methane or oxygen B is not correct because nitrogen is more abundant than methane D is not correct because nitrogen is more abundant than oxygen		1 1
(b) (i) (ii) (iii)	(hydrated) iron (III) oxide (neon) has a full outer shell (of electrons) M1 75-30 OR 45 (mm) M2 $(45 \div 75 \times 100)=60(\%)$	REJECT other oxidation states ALLOW Fe O_{3} IGNORE iron oxide ALLOW (neon) is unreactive / inert /has 8 electrons in the outer shell ALLOW (neon) does not lose or gain (or share) electrons ALLOW ecf from M1 correct answer of 60\% without working scores 2 answer of 40% without working scores 1	1
Total for question = 6			

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 4 (a) \& \begin{tabular}{l}
M1 baseline has been drawn in ink \\
M2 and will therefore interfere with / contaminate the results \\
M3 the water level is above A/the baseline \\
M4 and therefore A will mix with/dissolve in the water
\end{tabular} \& \begin{tabular}{l}
ALLOW baseline is not drawn in pencil \\
ALLOW will move up the paper / will get mixed up with A / will produce other colours /affect results / will smudge /ink is soluble \\
ALLOW water level is too high / A is under water \\
ALLOW A will wash off the paper \\
IGNORE references to lid
\end{tabular} \& 4 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 one spot about \(1 / 4\) of the way between the baseline and the top of the paper / solvent front and one spot about \(1 / 2\) way \\
M2 the lower spot labelled yellow and the higher spot labelled blue \\
the blue food colouring/it is more soluble (in water) ORA as long as yellow food colouring is referred to
\end{tabular} \& \begin{tabular}{l}
ALLOW answers that show solvent front \\
IGNORE blue colour/it travels further up the paper
\end{tabular} \& 2

1

\hline \multicolumn{4}{|r|}{Total for question = 7}

\hline
\end{tabular}

Question number	Answer	Notes	Marks
5 (a) (i) (ii)	copper magnesium cannot displace itself	ALLOW Cu REJECT copper(II) /Cu ${ }^{2+}$ ALLOW magnesium does not react with magnesium sulfate /magnesium ions $/ \mathrm{Mg}^{2+}$ IGNORE magnesium does not react with magnesium /itself	1 1
(b) (i) (ii)	magnesium / Mg aluminium /Al X copper /Cu zinc / iron	ALLOW 1 mark if aluminium and X are swapped. If copper(II) instead of copper 1 mark only ALLOW all other valid answers	2
(c)	An explanation that links the two points M1 magnesium / Mg (is the reducing agent) M2 magnesium / Mg donates electrons (causing Al^{3+} ions to be reduced)	ALLOW magnesium / Mg gives (away) / loses electrons (causing Al^{3+} to be reduced) / Al^{3+} gains electrons No M2 if reference to aluminium/Al instead of aluminium ions/ Al^{3+} IGNORE Mg is oxidised M2 dep on M1	2
Total for question = 7 marks			

Question number	Answer	Notes	Marks
6 (a)	B (chloroethene) A is not correct as the monomer has a double bond C is not correct as the monomer has two carbons D is not correct as the monomer has two carbons		1
(b)		Extension bonds do not need to go through the brackets	1
(c)	$\begin{aligned} & \text { M1 }\left(M_{r} \text { of chloroethene }\right)=62.5 \\ & \text { M2 } 2490000 \div 62.5=39840 \end{aligned}$		2
(d)	A discussion which refers to any 4 of the following points M1 polymers/poly(propene) will remain in landfill indefinitely OWTTE M2 (as they) are inert /unreactive/do not biodegrade/do not decompose M 3 burning produces greenhouse gases / CO_{2} M4 reference to climate change /global warming M5 burning produces toxic gases	ALLOW reference to running out of landfill sites OWTTE ALLOW carbon monoxide /CO /hydrogen chloride/ HCl Max 3 if any reference to the ozone layer	4
(e)	M1 1:1:3/31800 $\div 10600$ $\mathrm{M} 2 \mathrm{CHCl}_{3}$	ALLOW other evidence of working ALLOW the atoms in any order Answer of CHCl_{3} without working scores 2	2
Total for question $=10$			

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 7 (a) \& X contains oxygen /OH \& \begin{tabular}{l}
ALLOW hydrocarbons only contain hydrogen and carbon (atoms) \\
REJECT oxygen molecules or hydrogen and carbon molecules
\end{tabular} \& 1 \\
\hline (b) \& W \& \& 1 \\
\hline (c) \& V \& \& 1 \\
\hline (d) \& \(\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\) \& ALLOW CH2 \(\mathrm{CHCH}_{2} \mathrm{CH}_{3}\) \& 1 \\
\hline (e) \& \begin{tabular}{l}
M1 same molecular formula \\
M2 different displayed / structural formulae
\end{tabular} \& \begin{tabular}{l}
ALLOW same numbers of C and H atoms \\
ALLOW different arrangement of atoms
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(f) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{HBr}
\] \\
M1 \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\) as product \\
M2 rest of the equation correct \\
C (substitution) \\
A is not the correct answer because alkanes do not undergo addition reactions \\
B is not the correct answer as this is not a combustion reaction \\
D is not the correct answer as this reaction is not thermal decomposition
\end{tabular} \& ALLOW polysubstitution M2 dep on M1 \& 2

1

\hline (g) \& | A description that refers to any 3 from |
| :--- |
| M1 nitrogen and oxygen (from air) |
| M2 react at the high temperatures (in a car engine) |
| M3 forming oxides of nitrogen |
| M4 which react with/dissolve in water forming nitric acid $/ \mathrm{HNO}_{3}$ /acid rain | \& | REJECT mention of petrol contains nitrogen for M1 only |
| :--- |
| M2 dep on mention of nitrogen and oxygen |
| ALLOW NOX or named oxides of nitrogen |
| M4 dep on M3 | \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
8
\] \\
(a) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
M 1 NaCl \\
M2 \(\mathrm{MgCl}_{2}\) \\
M3 \(\mathrm{Mg}_{3} \mathrm{~N}_{2}\) \\
magnesium oxide \\
83
\end{tabular} \& \begin{tabular}{l}
Penalise once only for incorrect case or superscript numbers \\
ALLOW symbols reversed e.g. \(\mathrm{N}_{2} \mathrm{Mg}_{3}\) \\
ALLOW correct charges on ions e.g \(\mathrm{Mg}^{2+}\left(\mathrm{Cl}^{-}\right)_{2}\) \\
Spelling must be correct \\
IGNORE units
\end{tabular} \& \begin{tabular}{l}
\[
3
\] \\
1 \\
1
\end{tabular} \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 lithium changes (from 2.1) to 2 \\
M2 oxygen changes (from 2.6) to 2.8 \\
An explanation that links the three points \\
M1 strong (electrostatic) forces of attraction \\
M2 between oppositely charged ions \\
M3 which require a lot of energy to break
\end{tabular} \& \begin{tabular}{l}
ALLOW (two) lithium (atoms) lose one electron \\
ALLOW oxygen (atom) gains two electrons \\
No marks if mention of sharing electrons \\
ALLOW strong ionic bonds \\
IGNORE more energy \\
0 marks if any mention of covalent bonds, intermolecular forces or molecules
\end{tabular} \& 2

3

\hline \multicolumn{4}{|r|}{Total for question = 10}

\hline
\end{tabular}

Question number	Answer	Notes	Marks
9 (a)	M1 (electrostatic) attraction between nuclei M2 and shared pair(s) of electrons OR M1 (electrostatic) attraction between shared pair(s) of electrons M2 and nuclei	must be plural must be plural	2
(b)	An explanation that links any 3 from M1 the boiling points increase (down the group/from F to Br) M2 because the intermolecular forces get stronger M3 as (molecular) mass / size / number of electrons / (electron) shells increases M4 so more energy needed to separate the molecules/break the intermolecular forces	No M2, M3 or M4 if any mention of breaking covalent/ionic bonds	3
(c)	An explanation that links any five from M1 the structure is in layers M2 there are weak forces between the layers (of atoms) M3 which can slide (over one another making it soft) M4 each carbon / atom makes three covalent bonds M5 (one) delocalised electron (per carbon / atom) M6 (delocalised) electrons flow / move / are mobile (to conduct electricity)	ALLOW sheets /rows REJECT intermolecular forces/molecules/ions REJECT ionic bonds REJECT molecules/ions	5
Total for question $=10$			

Question number	Answer	Notes	Marks
10 (a) (i) (b) (i) (b) (ii)	measuring cylinder $M 1 Q=m \times c \times \Delta T$ $M 2 \Delta T=2880 \div(50 \times 4.2)$ $M 3 \Delta T=13.7(1)^{\circ} \mathrm{C}$ M4 (maximum temp $=13.7(1)+21 .(0)=) 34.7\left({ }^{\circ} \mathrm{C}\right)$ thermal energy/heat lost (to the atmosphere / surroundings)	ALLOW burette / pipette / syringe REJECT gas syringe M2 subsumes M1 ALLOW ecf from M3 ALLOW any number of sig fig except 1 in M3 and M4 Correct answer without working scores 4 IGNORE energy lost	1 4
(b) (iii)	M1 $2880 \div 1000$ OR 2.880 kJ M2 $2.880 \div 0.05(00)$ M3-57.6kJ/mol OR M1 $2880 \div 0.05(00)$ OR 57600 J M2 $57600 \div 1000$ M3-57.6 kJ/mol	ALLOW ecf from M1 ALLOW any number of sig fig except 1 in M3 ALLOW ecf from M1 ALLOW any number of sig fig except 1 in M3 Correct answer without working scores 3	3
Total for question = 9			

	(b)	M1 tangent drawn (at 40 s$)$ $M 2$ change in volume of hydrogen \div change in time $M 3$ correct answer between 2.75 and $3.75\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$ inclusive	If no tangent drawn allow 1 mark for $240 \div 40=6\left(\mathrm{~cm}^{3} / \mathrm{s}\right)$

Question number	Answer	Notes	Marks
12 (a) (i) (ii) (iii) (iv)	to make sure all the water is given off/evaporates $5.2(0 \mathrm{~g})$ $0.9(0 \mathrm{~g})$ M1 moles of $\mathrm{BaCl}_{2}=5.2 \div 208$ OR 0.025 M2 moles of $\mathrm{H}_{2} \mathrm{O}=0.9 \div 18$ OR 0.05(0) M3 $0.05(0) \div 0.025=2$	ALLOW to make sure the reaction is complete ALLOW ecf from (ii) ALLOW ecf from (iii) ALLOW ecf from M1 and M2 as long as the answer is an integer Correct answer without working scores 3	1 1 1 3
(b)	M1 (measure the) boiling point M2 $100^{\circ} \mathrm{C}$	ALLOW freezing point ALLOW $0^{\circ} \mathrm{C}$ for freezing point	2
(c) (i) (ii) (iii)	reversible M1 add water to anhydrous copper sulfate M2 which turns (from white) to blue M1 moles of water $=0.02 \times 5$ OR 0.1 M2 molecules of water $=6 \times 10^{22}$	ALLOW the reaction goes in both directions IGNORE equilibrium ALLOW white copper sulfate M2 dep on mention of anhydrous/white copper sulfate Max 1 mark if incorrect starting colour ALLOW ecf from M1 Correct answer without working scores 2 1.2×10^{22} scores 1	1 2 2
Total for question = 13			

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

