

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2022 Question Paper Log Number P72155A Publications Code WST02_01_2210_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75.

2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:

If all but one attempt is crossed out, mark the attempt which is NOT crossed out. If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme		Marks
1(a)(i)	$\int P(F < 3)$	$\left[P(F < 3 F \sim Po(1.5)) = \right] 0.8088$ awrt 0.809	
			(1)
(ii)	$\left[P(F \dots G) \right]$	5 = 1 - P(F, 5) or 1 - 0.9955	M1
	=	= 0.0045 awrt 0.0045	A1
			(2)
(b)	$R \sim \text{Po}(10$	awrt 0.792 $\therefore [P(R_{,,12})] = 0.7916$	M1
	<i>X</i> ~ B(15,	"0.7916")	M1
	$\left[P\left(X=1\right) \right]$	$0) = \int_{-10}^{15} C_{10} ("0.7916")^{10} (1 - "0.7916")^{5}$	M1
		= 0.11405 awrt 0.114	A1
			(4)
(c)	$H \sim \text{Po}(0.4)$		M1
	$\Big[\mathbf{P} \Big(H = 0 \Big]$	$= e^{-0.4} = 0.6703 \text{ or } [P(H > 0) = 1 - e^{-0.4} = 0.32967]$	M1
	Profit = 2	4×"0.6703"-3×"0.32967"	dM1
	= 0.6197 awrt 0.62		A1
			(4)
	Notes		Total 11
(a) (1)	BI	B1 awrt 0.809	
(ii)	M1	Writing or using $1 - P(F_{,,}, 5)$	
	A1	awrt 0.0045	
(b)	M1 For 0.792 or better		
	M1 For writing B(15, " their 0.7916") May be implied by a fully correct method for $P(X = 10)$		= 10)
	M1 A correct method to find $P(X = 10)$ using a binomial distribution (implied by awrt 0.114)		.114)
	A1	awrt 0.114	
(c)	M1	M1 Writing or using $Po(0.4)$ e.g. $P(H = 1) = 0.268$	
	M1 Correct method to find $P(H=0)$ or $P(H>0)$ May be implied by awrt 0.67 or 1 – awrt 0.67		vrt 0.67
	Midar	Dependent on the previous method mark being awarded. Correct method to find the	
	Mildep Allow $7.4 \times "0.6703" + 2 \times "0.32967" - 5$		
	A1	awrt 0.62 Allow 62 p	

Question Number	Scheme			
2 (a)		2k - 0.75		
		0.25		
			AI	
		-0.5 0.5 k		
			(2)	
(b)	Area $= \frac{1}{4} + \frac{1}{2} \left(\frac{1}{4} + 2k - \frac{3}{4} \right) \left(k - \frac{1}{2} \right) = 1$ or $\frac{1}{4} \left(k + \frac{1}{2} \right) + \frac{1}{2} \left(2k - 1 \right) \left(k - \frac{1}{2} \right) = 1$ or			
	1 [($(1^{2} - 3) (1^{2} - 3)$	M1	
	$\begin{bmatrix} -\frac{1}{4} + \left\lfloor \begin{pmatrix} k^2 & -\frac{1}{4} \end{pmatrix} - \left\lfloor \frac{1}{2} & -\frac{1}{8} \end{pmatrix} \end{bmatrix} = 1$			
	$8k^2 -$	$6k-5=0$ or $k^2 - \frac{3}{4}k - \frac{5}{8} = 0$ oe	A1	
		$3 + (3)^2 + 4 \times (5)$		
	(4k -	5)(2k+1)=0 or $k = \frac{\overline{4} + \sqrt{(-4)} + 4 + \sqrt{8}}{2}$ oe	M1	
	k-1	2	Δ1 *	
	$\kappa = 1.2$		(4)	
(c)	0.5م	$1 \left[\begin{array}{ccc} 1 & 25 \\ 2 & x^3 \\ 3 & z \end{array} \right]^{1.25}$, ,	
	$\left[\int_{-0.5}^{0.5} \frac{1}{4} x dx \right] + \int_{0.5}^{1.25} 2x^2 - \frac{5}{4} x dx = \left[0 \right] + \left[\frac{2x}{3} - \frac{5}{8} x^2 \right]_{0.5} $			
	$= \left(\frac{2 \times 1.25^{3}}{3} - \frac{3}{8} \times 1.25^{2}\right) - \left(\frac{2 \times 0.5^{3}}{3} - \frac{3}{8} \times 0.5^{2}\right)$			
	$=\frac{93}{2}$			
	$-\frac{128}{128}$ awr 0.727			
	10.1		(4)	
(d)	$[Q_1 =]$	3 3	BI	
	$Q_3^2 - \frac{5}{4}Q_3 + 0.125 = 0.5$ or $Q_3^2 - \frac{5}{4}Q_3 - 0.375 = 0$ oe		M1	
	$3 \sqrt{(3)^2 (1)}$			
	-	$\frac{1}{4} \pm \sqrt{\left(-\frac{1}{4}\right) + 4 \times \left(\frac{1}{8}\right)}$	M1	
	$Q_3 = -$	2		
	IQR =	"1.093" – 0.5	M1	
	=	awrt 0.59	A1	
		NY /	(5)	
(a)	M1	NOTES	Total 15	
(a)		A correct shape including labels. Allow 1.25 for k and 1.75 for $2k = 0.75$		
	111	Equating area to 1 (0.75 if $\frac{1}{4}$ + is not present) A correct method to find the area - allow	l sign	
(b)	M1	error. May be implied by a correct 3 term quadratic. If using integration then must get to	an	
	Λ1	equivalent equation as the main scheme		
		A correct method to solve a 3 term quadratic (May be implied by 1.25 and -0.5) If the 3	term	
	M1	quadratic is incorrect then a correct method for solving their 3 term quadratic must be sh	lown	
	A1*	1.25 must be the only answer given. All previous marks must be awarded.		
(c)	M1	$\int_{-0.5}^{0.5} \frac{1}{4} x dx + \int_{0.5}^{1.25} 2x^2 - \frac{3}{4} x dx \text{or} \int_{0.5}^{1.25} 2x^2 - \frac{3}{4} x dx \text{ on its own}$		

	A1	Correct integration of $2x^2 - \frac{3}{4}x$
	dM1	Dep on previous M being awarded. Substituting in the correct limits (implied by $\frac{93}{128}$ or awrt 0.727
		Condone 0.726) If the integration is incorrect, we must see the correct non simplified substitution
		into their integral. Ignore substitution into $\frac{1}{8}x^2$. Useful values to look for are $\frac{125}{96}$, $\frac{75}{128}$, $\frac{1}{12}$ and $\frac{3}{32}$
		or $\frac{275}{384}$ and $\pm \frac{1}{96}$
	A1	For $\frac{93}{128}$ or awrt 0.727
(d)	B1	For 0.5 May be seen in their IQR
	M1	A correct equation for finding Q_3
	M1	A correct method to solve a 3 term quadratic (implied by $Q_3 = \frac{3+\sqrt{33}}{8}$ or $\frac{3-\sqrt{33}}{8}$ or awrt 1.093 or awrt
		-0.343) If the 3 term quadratic is incorrect then a correct method for solving their 3 term
		quadratic must be shown. If using $Q_3^2 - \frac{3}{4}Q_3 - \frac{5}{8} = 0$ then M0
	M1	Correct method to find the IQR ft their Q_3 or implied by awrt 0.593
	A1	awrt 0.59 Allow $\frac{-1+\sqrt{33}}{8}$

Question Number	Scheme Marks			
3(a)	H ₀ : $p = 0.35$ H ₁ : $p \neq 0.35$ B1			
	Ρ(<i>X</i> ,,	8) = awrt 0.0303 or $P(X \dots 21)$ = awrt 0.0173 or $P(X, 20)$ = awrt 0.9827	M1	
	$\left[\mathbf{P}(X, X) \right]$	(0, 8) =] awrt 0.0303 and $[P(X 21) =]$ awrt 0.0173	A1	
	CR X	, 8 and X 21	A1	
			(4)	
(b)	0.0476	5	B1ft	
			(1)	
(c)	H ₀ : <i>p</i>	= 0.028 H ₁ : $p > 0.028$	B1	
	$Y \square B$	$(250, 0.028) \Longrightarrow Y \square \text{ Po}(7)$	M1	
	P(<i>Y</i>	$11) = 1 - P(Y_{,,10})$ or $P(Y_{13}) = 1 - 0.973$	M1	
		= 0.0985 or Critical region Y13	A1	
	There seeds 0.028	is insufficient evidence to suggest that the <u>proportion</u> of sunflower that grow to a height of more than 3 metres is now <u>greater</u> than	A1	
		Notes	(5) Total 10	
(a)	B1	Both hypotheses in terms or p or π	1000110	
	M1	One of the correct probability statements. Implied by a correct critical region		
	A1	awrt 0.0303 and awrt 0.0173		
	A1	A1 Boin parts of the critical region given. Allow alternative notation e.g. $X < 9$ and $X > 20$ Do not allow as probability statements		
(b)	Di	For 0.0476 Allow awrt 0.0475 (calculator) or ft their two critical regions provided proba	bilities are	
	B1 seen in part (a) Common ft is for X ,, 7 and X 21 gives 0.0297			
(c)	B 1	Both hypotheses in terms or p or π – If already lost the mark in (a) for incorrect letter allow any letter		
	M1	1 Po(7) written or used		
		Writing or using $1-P(Y, 10)$ or $1-0.9015$ or $1-0.973$ (May be implied by 0.0985))	
		or may be implied by $Y13$ provided Po(7) seen or used		
	N/1	If using N(7, 6.804) or N(7, 7) allow use of $1 - P(Y_{1}, 10)$ or $1 - P(Y_{1}, 10.5)$		
	IVI I	B(250, 0.028) gives 0.09549 and implies M1		
		N(7, 6.804) gives awrt 0.09 (Calc gives 0.08983) or awrt 0.13 (Calc gives 0.125) a	nd implies	
		M_1 N(7, 7) gives awrt 0.09 (Calc gives 0.09293) or awrt 0.13 (Calc gives 0.1284) and i	mplies M1	
<u> </u>	A1	awrt 0.0985 or CR: Y13 provided Po(7) seen or used (Allow any letter for the CR)		
		Independent of the hypotheses but dependent on the previous M1A1 being awarded. A c	orrect	
	A1	conclusion in context. Allow amount/number for proportion, sunflowers for seeds and in for greater. Ignore any non-contextual statements	creased oe	

Question Number	Scheme		Marks
4(a)	$X \square B(20, 0.4)$		M1
	P(5,,	X < 8 = P(X, 7) – P(X, 4) or 0.4159 – 0.0510	M1
		= 0.3649 awrt 0.365	A1
			(3)
(b)	<i>Y</i> ~N(50	6, 33.6)	M1A1
	n - 0.5	-"56"1 08	M1M1
	√"3	3.6"	B1
	<i>n</i> = 45		A1cao
			(6)
		Notes	Total 9
(a)	M1	Writing or using B(20, 0.4)	
	M1	For writing or using $P(X_{,,7}) - P(X_{,,4})$ or $P(X = 5) + P(X = 6) + P(X = 7)$	
	A1 awrt 0.365		
(b)	M1 For writing or using N(56,) (May be seen in a correct standardisation)		
	A1 For writing or using N(56, 33.6) (May be seen in a correct standardisation)		
		For standardising (allow \pm) using any letter, their "56" and "33.6" and putting = to \pm	z value,
	M1	where $1 < z < 2$ Condone missing ± 0.5 Condone 1 – standardisation, using any letter	, their "56"
		and "33.6" and putting = to z value, where $1 < z < 2$	
	M1	M1 for using a continuity correction -0.5 if using <i>n</i> or $+0.5$ if using $n - 1$. Either in t	heir
	1911	standardisation or after finding \boldsymbol{n} (but not both) No need to put = to z value	
	B1	For using ± 1.98 or better (calc gives) 1.97914	
	A1	45 - must see a correct continuity correction or an awrt 45.02 or awrt 45.03	
		45 trom no working is 0/6	

Question Number		Scheme	Marks	
5(a)	d = 7		B1	
	$\frac{c}{3} - \frac{7}{6} = 1 - \frac{1}{6} ("7" - c)^2$			
	$\frac{c}{3}-\frac{7}{6}$	$=1 - \frac{1}{6} \left("49" - 2 \times "7" c + c^{2} \right) \text{ oe } \text{ or } c^{2} - 12c + 36 = 0 \text{ oe}$	dM1	
	(c-6)	$c^2 = 0$ $\therefore c = 6 *$	A1*	
			(4)	
(b)	P(X >	$3.5) = 1 - \frac{1}{6} (3.5 - 3)^2$	M1	
		$=\frac{23}{24}$ oe awrt 0.958	A1	
			(2)	
(c)	$P(3.5 < X < 5.5) = \left(\frac{5.5}{3} - \frac{7}{6}\right) - \left(\frac{1}{6}(3.5 - 3)^2\right) = \frac{5}{8} \text{ oe}$			
	$P(X > 4.5 \mid 3.5 < X < 5.5) = \frac{\left(\frac{5.5}{3} - \frac{7}{6}\right) - \left(\frac{4.5}{3} - \frac{7}{6}\right)}{\frac{5}{8}}$			
		$=\frac{8}{15}$ oe awrt 0.533 A1		
		Notos	(3) Total 0	
(2)	R1	$\frac{1}{1}$	10tal 9	
(u)	M1	Forming an equation in c with their d or d		
	dM1	Dependent on previous M1. Multiplying out brackets and would reduce to a 3 term quad for their d or d	lratic correct	
	A1*	A1* All previous marks must be awarded. For solving the correct 3TO and statement		
(b)	M1	M1 Substitution of 3.5 into correct expression		
	A1	Allow equivalent fractions or awrt 0.958		
(c)	M1 Correct method to calculate P($3.5 < X < 5.5$) may use $1 - \frac{23}{24}$ for $\left(\frac{1}{6}(3.5 - 3)^2\right)$			
		Useful figures are $\left(\frac{212}{3} - \frac{7}{6}\right) = \frac{2}{3}$ and $\left(\frac{1}{6}(3.5 - 3)^2\right) = \frac{1}{24}$		
		Correct method using their 5/8		
	M1	Useful figure is $\left(\frac{5.5}{3} - \frac{7}{6}\right) - \left(\frac{4.5}{3} - \frac{7}{6}\right) = \frac{1}{3}$		
	A1	Allow equivalent fractions or awrt 0.533		

Question Number		Scheme	Marks	
6(a)	$\left(2 \times \frac{a}{a+c}\right)$	$\left(2 \times \frac{a}{a+7} \times \frac{1}{4} \times \frac{3}{4}\right) + \left(\frac{a}{a+7} \times \frac{1}{4} \times \frac{1}{4}\right) = \frac{63}{256} \text{ or } \frac{a}{a+7} \times \left(1 - \left(\frac{3}{4}\right)^2\right) = \frac{63}{256} \text{ or } M1 \text{ M1}$		
	$\frac{a}{a+7} \times$	$\left[\left(\frac{1}{4}\right)^2 + 2 \times \frac{1}{4} \times \frac{3}{4}\right] = \frac{63}{256}$		
	$\frac{a}{7+a} = \frac{1}{2}$	$\frac{63}{256} \div \frac{7}{16}$ or $\frac{a}{7+a} = \frac{9}{16}$ $\therefore a = 9 *$	A1*	
			(3)	
(b)	Range (R) 0, 5, 10 (and 15)	B1	
	Bag: P($P(20) = \frac{9}{16}$ and $P(5) = \frac{5}{16}$ and $P(10) = \frac{2}{16}$	B1	
	$\int \mathbf{P}(\mathbf{R}-\mathbf{r})$	$\frac{10}{10} - \frac{5}{10} \times \frac{1}{10} + \frac{2}{10} \times \frac{3}{10} \times \frac{3}{10}$		
		$5^{-1}16^{-4}4^{-1}16^{-4}4^{-4}$	M1	
	$\int \mathbf{P}(R =$	$5) = \left[2 \times \frac{5}{16} \times \frac{1}{4} \times \frac{3}{4} + \frac{5}{16} \times \frac{3}{4} \times \frac{3}{4} + 2 \times \frac{2}{16} \times \frac{1}{4} \times \frac{3}{4} + \frac{2}{16} \times \frac{1}{4} \times \frac{1}{4}\right]$	M1	
			M1	
	$\lfloor P(R =$	$10) = \int \frac{1}{16} \times \frac{1}{4} \times \frac{1}{4}$		
	R	0 5 10 15		
	r	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1cao	
		256 256 256 256		
		Notes	(0) Total 9	
(a)	M1	For use of \underline{a} in an equation		
	M1	a+7 Setting up a correct equation to find the value of a		
	A1*	a = 9 with at least one further correct line of working		
(b)	B1	For the 3 ranges 0, 5 and 10 and no extra incorrect ones or all extras have probability	of 0	
		For the correct 3 probabilities written or used for the bag		
	B 1	$\frac{2}{16}$ and/or $\frac{5}{16}$ may be implied by a correct answer for $P(R=0)$ or $P(R=5)$ and		
		$\frac{9}{16}$ may be implied by a correct answer for $P(R = 10)$		
		NB <i>p</i> and <i>q</i> must be consistent for the next 3 method marks		
		A correct method to find one probability for $P(R = 0)$ or $P(R = 5)$ or $P(R = 10)$ all	ЭW	
	N/I	$p \times q \times q + r \times (1-q) \times (1-q)$ or		
	IVII	$2 \times p \times q \times (1-q) + p \times (1-q) \times (1-q) + 2 \times r \times q \times (1-q) + r \times q \times q \text{ or } m \times (1-p)$	$\times (1-p)$	
		where <i>m</i> , <i>p</i> , <i>q</i> and <i>r</i> are probabilities. (May be implied by $\frac{23}{256}$ or $\frac{89}{256}$ or $\frac{81}{256}$)		
		A correct method to find two probabilities from $P(R = 0)$ or $P(R = 5)$ or $P(R = 10)$) allow	
	M1	$p \times q \times q + r \times (1-q) \times (1-q)$ or		
	1411	$2 \times p \times q \times (1-q) + p \times (1-q) \times (1-q) + 2 \times r \times q \times (1-q) + r \times q \times q \text{ or } m \times (1-p)$	$\times (1-p)$	
		where <i>m</i> , <i>p</i> , <i>q</i> and <i>r</i> are probabilities. (May be implied by 2 from $\frac{2.5}{256}$ or $\frac{0.7}{256}$)		
	M1	A correct method to find all 3 probability for $P(R = 0)$ and $P(R = 5)$ and $P(R = 10)$) allow	
		$p \times q \times q + r \times (1-q) \times (1-q) \text{ or }$	$\times (1 -)$	
		$\sum_{i=1}^{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{i=1}^{n} $	(1-p)	
		where <i>m</i> , <i>p</i> , <i>q</i> and <i>r</i> are probabilities. (May be implied by $\frac{1}{256}$ and $\frac{1}{256}$ and $\frac{1}{256}$) or thes	,e 5	
		probabilities that sum to $\frac{120}{256}$		

A 1	Correct ranges with correct associated probabilities attached. All extras must have an associated probability of 0 (Does not have to be seen in a table) NB Allow decimal answers
	correct to 3 decimal places $\frac{23}{256} = 0.090 \frac{89}{256} = 0.348 \frac{81}{256} = 0.316 \left[\frac{63}{256} = 0.246\right]$

Question Number	Scheme		
7(i)	$\frac{a+b}{2} = 9$ and $\frac{13-5}{b-a} = \frac{1}{5}$ or $a = -11$ and $b = 29$		
	$P\left(X > \frac{"29" - "11"}{3}\right) \left[= P(X > 6)\right] \text{ or } P\left(X > \frac{9 \times 2}{3}\right) \left[= P(X > 6)\right] = \frac{23}{40}$	M1A1	
(ii)	$\frac{1}{12}(c-1)^2 = 0.48 \Rightarrow c = 3.4$	M1	
	$\frac{12}{E(Y)} = \frac{1 + "3.4"}{E(Y)}$	M1	
	$\frac{2}{(2)}$ $\frac{2}{(1+3.4)}$		
	$E(Y^2) = 0.48 + "\left(\frac{1+6+1}{2}\right)" = 5.32$	M1A1	
(:::)		(4)	
(111)	$W \sim U[0,20] X \sim U[10,20] Y \sim U[0,10]$ $W \leq 6 \text{ or } W > 14 \text{ or } Y \leq 12 \text{ or } Y > 8 \text{ onv latter ignore distribution}$	M1	
	w < 0 or $w > 14$ or $x < 12$ or $1 > 8$ any retter, ignore distribution (6-0) a $p(w, 44)$ $(20-14)$		
	$2 \times P(W < 6) = 2 \times \frac{(0 - 0)}{20} \text{ or } 2 \times P(W > 14) = 2 \times \frac{(20 - 14)}{20} \text{ or}$		
	$P(W \le 6) = {}^{6-0}$ and $P(W \ge 14) = {}^{20-14}$ or $P(X \ge 14) = {}^{20-14}$ or $P(X \le 6) = {}^{6-0}$	MI	
	$\frac{1}{20} (n < 0) - \frac{1}{20} and \frac{1}{(n > 1+)} - \frac{1}{20} on \frac{1}{(n > 1+)} - \frac{1}{10} on \frac{1}{(n < 0)} - \frac{1}{10}$		
	$P(8 < W < 12) = \frac{12 - 8}{20}$ or $P(X < 12) = \frac{12 - 10}{10}$ or $P(Y > 8) = \frac{10 - 8}{10}$	M1	
	P(shortest side < 6) = " $\frac{3}{10}$ "+" $\frac{3}{10}$ "+" $\frac{1}{5}$ " or " $\frac{1}{5}$ "+" $\frac{3}{5}$ " = $\frac{4}{5}$	dM1A1	
		(5)	
	Alternative 1	2.61	
	6 < W < 8 or $12 < W < 14$ any letter, ignore distribution $14 12 \qquad M2$ for	MI	
	$\frac{P(6 < W < 8)}{20} = \frac{8 - 6}{20} \text{ or } P(12 < W < 14) = \frac{14 - 12}{20} \qquad \qquad P(12 < X < 14) = \frac{14 - 12}{12} \text{ or }$	M1	
	$P(6 < W < 8) = \frac{1}{10} \text{ and } P(12 < W < 14) = \frac{1}{10} \text{ or } P(6 < Y < 8) = \frac{8-6}{10}$	M1	
	$2 \times r(0 < w < 8) = 2 \times \frac{10}{10}$ of $2 \times r(12 < w < 14) = 2 \times \frac{10}{10}$		
	P(shortest side < 6) = 1 - " $\frac{1}{10}$ " - " $\frac{1}{10}$ " or 1 - " $\frac{2}{10}$ " = $\frac{4}{5}$	dM1A1	
	Alternative 2	(5)	
	W > 10 or 12 < W < 14 or 6 < W < 8 or W < 10 any letter, ignore distribution	MI	
	$P(12 < W < 14) = \frac{14 - 12}{20}$ and $P(W > 10) = \frac{20 - 10}{20}$ or		
	$P(6 < W < 8) = \frac{8-6}{20}$ and $P(W < 10) = \frac{10-0}{20}$	M1	
	$P(12 < W < 14 W > 10) = \frac{\binom{1}{10}}{\binom{1}{12}} = \frac{1}{5} \text{ or } P(6 < W < 8 W < 10) = \frac{\binom{1}{10}}{\binom{1}{12}} = \frac{1}{5}$	M1	
	P(shortest side < 6) = $1 - \frac{1}{5} = \frac{4}{5}$	dM1A1	
		(5)	
	NB Any answer of $\frac{4}{5}$ scores 5/5 provided it has not come from incorrect working		
		Total 12	

		Notes
		NB Allow any letter throughout the question
(i)	M1	For setting up 2 correct equations May be implied correct answers for <i>a</i> and <i>b</i>
	M1	Realising the need to find P(X > 6) or allow use of "their <i>a</i> " and " their <i>b</i> " or their " $\frac{a+b}{2} = 9$ "
	A1	23/40 oe or 0.575
(ii)	M1	Correct equation to find c with $c =$
	M1	Correct method for finding E(<i>Y</i>) using "their <i>c</i> "
	M1	Correct method for finding $E(Y^2)$ using "their $E(Y)^2$ "
	A1	For 5.32 (Allow $\frac{133}{25}$)
(iii)	M1	For identifying a correct region required to answer the question. Allow any letter and ignore the
		distribution associated with the letter. May be implied by $W < 6$ or $W > 14$ or $X < 12$ or $Y > 8$
		For a correct method to find a required probability. Allow any letter but the probability must be
	M1	associated to the correct distribution. e.g. $2 \times P(W < 6) = 2 \times \frac{3}{10} \text{ or } 2 \times P(W > 14) = 2 \times \frac{3}{10} \text{ or } 2 \times P(W > 14) = 2 \times \frac{3}{10} \text{ or } 2 \times P(W > 14) = 2 \times \frac{3}{10} \text{ or } 2 \times P(W > 14) = 2 \times \frac{3}{10} \text{ or } 2 \times P(W > 14) = 2 \times \frac{3}{10} \text{ or } 2 \times P(W > 14) = 2 \times \frac{3}{10} \text{ or } 2 \times P(W > 14) = 2 \times \frac{3}{10} \text{ or } 2 \times P(W > 14) = 2 \times \frac{3}{10} \text{ or } 2 \times \frac{3}$
		$P(W < 6) = \frac{3}{10}$ and $P(W > 14) = \frac{3}{10}$ or $P(X > 14) = \frac{3}{5}$ or $P(Y < 6) = \frac{3}{5}$
		For a correct method to find a second required probability. Allow any letter but the probability
	M1	must be associated to the correct distribution. e.g. $P(8 < W < 12) = \frac{1}{5}$ or $P(X < 12) = \frac{1}{5}$ or $P(Y > 8) = \frac{1}{5}$
	33.41	Dependent on previous 3 M marks. For $P(W < 6) + P(W > 14) + P(8 < W < 12)$ or
	dNII	P(X > 14) + P(X < 12) or $P(Y < 6) + P(Y > 8)$ ft their probabilities
	A1	cao
Alternati	ve 1	
(:::)	M1	For identifying a correct region required to answer the question. Allow any letter and ignore the
(111)	IVII	distribution associated with the letter. May be implied by $6 < W < 8$ or $12 < W < 14$
		For a correct method to find a required probability. Allow any letter but the probability must be
	M1	associated to the correct distribution. e.g. $P(6 < W < 8) = \frac{1}{10}$ or $P(12 < W < 14) = \frac{1}{10}$
		For a correct method to find a second required probability. Allow any letter but the probability
	M1	must be associated to the correct distribution. e.g. $P(6 < W < 8) = \frac{1}{10}$ and $P(12 < W < 14) = \frac{1}{10}$ or
		$2 \times P(6 < W < 8) = 2 \times \frac{1}{10}$ or $2 \times P(12 < W < 14) = 2 \times \frac{1}{10}$
	dM1	Dependent on previous 3 M marks. For $1 - \frac{1}{10} - \frac{1}{10}$ or $1 - \frac{2}{10}$
	A1	cao
Alternati	ve 2	
	M1	For identifying a correct region required to answer the question. Allow any letter and ignore the distribution associated with the letter. May be implied by $W > 10$ or $12 < W < 14$ or $W < 10$ or $6 < W < 8$
		For a correct method to find both the required probabilities. Allow any letter but the probability
	M1	must be associated to the correct distribution e.g. $P(12 < W < 14) = \frac{1}{2}$ and $P(W > 10) = \frac{1}{2}$ or
		$\frac{1}{10} = \frac{1}{10} = \frac{1}{2} = \frac{1}{2}$
		$P(6 < W < 8) = \frac{1}{10}$ and $P(W < 10) = \frac{1}{2}$
	M1	For correct use of conditional probability e.g. $\frac{\frac{1}{10}}{\frac{1}{2}}$
	dM1	Dependent on previous 3 M marks. For $1 - \frac{1}{5}$
	A1	cao

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom