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General Introduction 

This was a paper with some accessible and challenging questions thus every student was able 
to show what they had learnt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Report on Individual Questions 

Question 1  

This question was successfully attempted by the majority of students, with most adopting a 
partial fractions approach to Q01(a) and attempting to write the left hand side as a sum or 
difference of two or three fractions. Many variations were seen, with those students who used 

the given right hand side to produce two fractions with denominators   2 1 2r r   and 

  2 2 3r r   generally more successful. Of those students who attempted to find three 

partial fractions, although the majority successfully found the numerators, many did not 
produce adequate evidence to progress from this to the given result. Writing

     
1 1 1

2 1 2 2 3r r r
 

  
 and moving straight to the printed result without splitting the 

middle term and combining to two terms was an incomplete method and so was awarded no 
marks. 

Surprisingly few students took the simpler route of combining the RHS over a common 
denominator, but where this approach was used it almost invariably led to a correct result. 

Q01(b) was well attempted, with many students scoring all the marks. Most were able to 
write the first and last pairs of terms and use a method of differences to eliminate terms 
resulting in two correct fractions. Where errors were seen, these were usually a failure to 
combine the remaining two fractions or manipulation errors when attempting to do so. 

Question 2 

This question was attempted well, with many students scoring 6 or 7 marks. By far the most 
common error was an inclusion of an = on the upper limit of 3 in the inequality 3 3x  . 

Most students used a valid approach, usually multiplying both sides by  2
3x   or combining 

terms on one side as a single fraction to obtain correct critical values. Where students 

multiplied by  3x   it was rare for them to state that 3 0x    and marks were lost as a 

consequence. Whilst most students successfully identified all three critical values, there were 
errors in identifying the required solution, with direction and = errors on the inequality signs. 
Many students supported their solution with a sketch of the cubic. 

Question 3 
 
Most students obtained a correct value of 2 for r (although this was often not seen until the 

final line) and an argument 
5

of  or ,  although 
3 3 3

  
was seen frequently. Significantly 

fewer students were able to apply arg z  2n to find four positive answers, with many 

providing one or two correct solutions, but often including a mixture of positive and negative 
exponents.  



Question 4 

This question was well attempted, with most students successfully rearranging the given 
equation to express z in terms of w, although sign errors were not uncommon here. Most 
students recognised the need to apply Pythagoras to form an equation in u and v or x and y 
and went on to produce a fully correct solution. However, errors in application were seen, 

most commonly a failure to square a coefficient of 3 in 3w or 2 in  2 1 w . Despite this, 

many were still able to form a circle equation and gain the method marks although some 
could not complete the square correctly and so did not obtain the correct radius. 

 
Question 5 

Most students could differentiate correctly, applying the product rule twice to produce 
expressions for y

 
and y . Those who did not notice that the third differential simplified 

often got into difficulties on attempting the fourth differential. Although most then went on to 
use these two results to reach a result in the given form, errors were seen at this stage, or it 
was omitted altogether. Most students then went on to use their expressions for ,y y 

 
and 

y  to find values at 0x   and substitute into an appropriate MacLaurin expansion, finally 

going on to substitute 0.2x    and produce a correct answer, although some numerical and 
algebraic errors were seen. It was not uncommon to see students substitute 0.2x   and so 
score zero in Q05(c). 
 
Question 6  

Some students forgot to divide the right hand side by x, leaving it as x while others forgot to 
multiply their integrating factor on the right hand side and so integrated 1. However most 

students were able to determine an integrating factor of ln 2e x x , but some students could not 

get any further. Most who got this far were able to write their integrating factor as 2e xx   and 

multiply through to produce a correct statement involving 2e dxx x . Most students then 

attempted integration by parts, many correctly, but errors were often seen here, mostly in the 
form of incorrect coefficients. Those students who obtained an integrating factor which did 
not give rise to an integral that required integration by parts could gain no further marks. 
Students who got as far as an expression which was the result of an integration usually 
completed the final step to gain a general solution for y which included a constant although a 

few incorporated 2e x  into the constant, creating a new "constant". 
 
 

 

 

 



Question 7 

This question was usually attempted well, with most students able to apply Pythagoras to 
form two equations in x and y or u and v. The use of w seemed to cause students to think of a 
transformation and so the most common approach was to use x and y for the first and u and v 
for the second. Many students did not subsequently make it explicit that at the point of 
intersection they should just be using one pair of variables. A small minority of students were 
able to write down directly that the locus of Q was the perpendicular bisector of (0,0) and   
(1,-1) and write it as 1y x  . 

Some numerical and manipulation errors were seen, as well as errors in applying Pythagoras, 
most commonly a failure to square a coefficient or errors arising from attempted factorisation 
before squaring, but most students were able to find two values for x or y by solving their 
quadratic. All but a small minority then found the corresponding value to complete the 
coordinate pair and solutions were usually identifiably paired. A common error was to change 
2 2 2 0y x    to 2 0y x   . 

 

Question 8 

Many different approaches were used in this question, with most students able to gain some, 
or all, of the marks. Almost all students were able to apply the chain rule to obtain a correct 
first derivative and most then attempted to find a second derivative. Many errors were seen 
here, with some students failing to use the product rule and others incorrectly applying the 
chain rule or neglecting it altogether. Students who did achieve an expression for a second 
derivative were then usually able to substitute this and their first derivative into the given 
differential equation to achieve the printed result. This could take many forms, including 

combinations of terms in x and et . Some students did work from the second differential 
equation to the initial one and provided the work was correct this was equally acceptable.  

Almost all students could form an auxiliary equation and solve it to obtain two complex 
roots. Most then used these to give a correct general solution, although a significant minority 
gave it in terms of x or even   instead of t. Although some students stopped at this point, 
most then replaced t by ln x and gave a correct general solution. Those who had given the 
general solution in terms of x thought they had finished and so did not reverse the 
substitution. 

 

 



Question 9 
 
Q09(a) was completed well, with the vast majority of students able to give both sets of 

coordinates. A small minority gave their answers in the form  ,a  or neglected to write 

them as coordinate pairs having found values for . 

In Q09(b) most students identified the need to integrate  2
2 sin2a  , and most then applied a 

correct identity to replace 2sin 2  with  1
1 cos 4

2
 , although many incorrect identities 

were attempted. Where a correct identity was used, integration was usually carried out 

resulting in 
1

sin 4
4

   although coefficient errors were not uncommon. Many students were 

unable to identify the correct limits required to evaluate the required area R, with many 

attempting an integral between the two values found in Q09(a), 
5

and 
12 12

 
, and failing to 

evaluate the area of the sector anywhere in their solution.  

 

  



Grade Boundaries 

Grade boundaries for this, and all other papers, can be found on the website on 
this link: 

http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx 
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