Pearson Edexcel

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Subsidiary Level in Chemistry (WCH12) Paper 01 Energetics, Group Chemistry, Halogenoalkanes and Alcohols

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P71876A
Publications Code WCH12_01_2301_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge.
Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
1(a)	The only correct answer is C (6.3 \%) \boldsymbol{A} is not correct because the uncertainty has been halved rather than doubled \boldsymbol{B} is not correct because this is the uncertainty for a single measurement only \boldsymbol{D} is not correct because the uncertainty has been doubled twice	(1)

Question Number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is $\mathbf{C}\left(16.0^{\circ} \mathrm{C}\right)$ \boldsymbol{A} is not correct because this is being calculated by using times $2 / 3$ of the mass of methanol rather than times $3 / 2$ \boldsymbol{B} is not correct because this would be the expected temperature change had the mass of methanol burned remained at 0.20 g \boldsymbol{D} is not correct because this is being calculated by using times $3 / 2$ of the volume of water rather than times $2 / 3$	$\mathbf{(1)}$

Question Number	Answer	Mark
$\mathbf{1 (c)}$	The only correct answer is \mathbf{D} (use of the molar mass of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, in the calculation) A is not correct because this would produce a smaller temperature change and result in a less exothermic value for the combustion enthalpy \boldsymbol{B} is not correct because this would produce a smaller temperature change and result in a less exothermic value for the combustion enthalpy C is not correct because this would result in a larger apparent mass of methanol burned and a less exothermic value for the combustion enthalpy	(1)

Question Number	Answer	Mark
2	The only correct answer is $\mathbf{A}\left(1 / 2 \operatorname{Br}_{2}(1) \rightarrow \operatorname{Br}(\mathrm{g})\right)$ \boldsymbol{B} is not correct because bromine is a liquid in its standard state \boldsymbol{C} is not correct because this shows the formation of two moles of gaseous bromine atoms \boldsymbol{D} is not correct because bromine is a liquid in its standard state and this shows the formation of two moles of gaseous bromine atoms	(1)

| Question
 Number | Answer |
| :--- | :--- | :--- |
| $\mathbf{3}$ | The only correct answer is $\mathbf{A}((0.5 \times 436+0.5 \times 242)-431)$
 \boldsymbol{B} is not correct because the bond enthalpies of the reactants have been subtracted from the bond enthalpy of the
 product and this is for the formation of two moles of HCl
 C is not correct because the bond enthalpies of the reactants have been subtracted from the bond enthalpy of the
 product
 \boldsymbol{D} is not correct because this is for the formation of two moles of HCl |
| $\mathbf{(1)}$ | |

Question Number	Answer	Mark
4	The only correct answer is $\mathbf{D}\left(\mathrm{CF}_{4}\right)$ \boldsymbol{A} is not correct because HF also has hydrogen bonds and permanent dipole-permanent dipole interactions \boldsymbol{B} is not correct because OF_{2} also has permanent dipole-permanent dipole interactions C is not correct because PF_{3} also has permanent dipole-permanent dipole interactions	(1)

Question Number	Answer		
$\mathbf{5}$	The only correct answer is $\mathbf{C}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right)$		
\boldsymbol{A} is not correct because the electronegative nitrogen is not bonded directly to a hydrogen			
\boldsymbol{B} is not correct because the electronegative fluorine is not bonded directly to a hydrogen			
\boldsymbol{D} is not correct because the electronegative oxygen is not bonded directly to a hydrogen		$\quad \mathbf{(1)}$	Mark
:---			

| Question
 Number | Answer |
| :--- | :--- | :---: |
| $\mathbf{6}$ | The only correct answer is B ($\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl})$
 \boldsymbol{A} is not correct because the trend in boiling temperature of the hydrogen halides depends on the strength of the
 London forces as well as polarity
 \boldsymbol{C} is not correct because HF has hydrogen bonding and a higher boiling temperature than HI
 \boldsymbol{D} is not correct because HF has hydrogen bonding and the highest boiling temperature |

Question Number	Answer		
$\mathbf{7}$	The only correct answer is $\mathbf{A}\left(\mathrm{VO}^{2+}\right)$		
\boldsymbol{B} is not correct because the oxidation number of vanadium is +5 in this ion			
\boldsymbol{C} is not correct because the oxidation number of vanadium is +5 in this ion			
\boldsymbol{D} is not correct because the oxidation number of vanadium is +5 in this ion		\quad	$\mathbf{(1)}$
:---:			

| Question
 Number | Answer |
| :--- | :--- | :---: |
| $\mathbf{8}$ | The only correct answer is $\mathbf{B}\left(\mathrm{K}_{2} \mathrm{MnO}_{4}\right)$
 \boldsymbol{A} is not correct because the oxidation number of manganese is +7 in this compound
 \boldsymbol{C} is not correct because the oxidation number of manganese is +5 in this compound
 \boldsymbol{D} is not correct because there are two atoms of manganese and the oxidation number of manganese is
 +3 in this compound |

| Question
 Number | Answer |
| :--- | :--- | :---: |
| $\mathbf{9}$ | The only correct answer is $\mathbf{C}\left(\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\right)$
 \boldsymbol{A} is not correct because LiCl would not form a precipitate when mixed with a solution of potassium sulfate
 B is not correct because NaNO_{3} produces a yellow flame colour and would not form a precipitate when mixed with
 a solution of potassium sulfate
 D is not correct because BaCl_{2} produces a green flame colour |

| Question
 Number | Answer |
| :--- | :--- | :---: |
| $\mathbf{1 0}$ | The only correct answer is $\mathbf{C}\left(\mathrm{Sr} \quad+\quad \mathrm{H}_{2} \mathrm{O} \rightarrow\right)$
 \boldsymbol{A} is not correct because MgO is the only product of this reaction
 \boldsymbol{B} is not correct because CaCl_{2} is the only product of this reaction
 \boldsymbol{D} is not correct because $\mathrm{Ba}(\mathrm{OH})_{2}$ is the only product of this reaction |

Question Number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is $\mathbf{D}\left(2 \mathrm{~F}^{-}(\mathrm{aq})+\mathrm{At}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{At}^{-}(\mathrm{aq})+\mathrm{F}_{2}(\mathrm{aq})\right)$ \boldsymbol{A} is not correct because iodine is more reactive than astatine \boldsymbol{B} is not correct because chlorine is more reactive than bromine \boldsymbol{C} is not correct because chlorine is more reactive than iodine	$\mathbf{(1)}$

Question Number	Answer	Mark
12	The only correct answer is $\mathbf{D}\left(8 \mathrm{KI}(\mathrm{s})+9 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 8 \mathrm{KHSO}_{4}(\mathrm{aq})+4 \mathrm{I}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)$ \boldsymbol{A} is not correct because this is not a redox reaction \boldsymbol{B} is not correct because this is not a redox reaction \boldsymbol{C} is not correct because one mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ oxidises only $2 / 3$ moles of bromide ions	(1)

Question Number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is A $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}\right)$ \boldsymbol{B} is not correct because iodoalkanes have higher rates of hydrolysis than chloroalkanes C is not correct because tertiary halogenoalkanes have higher rates of hydrolysis than primary halogenoalkanes \boldsymbol{D} is not correct because iodoalkanes have higher rates of hydrolysis than chloroalkanes and tertiary halogenoalkanes have higher rates of hydrolysis than primary halogenoalkanes	$\mathbf{(1)}$

$\begin{array}{c}\text { Question } \\ \text { Number }\end{array}$	Answer	Mark
$\mathbf{1 4}$	The only correct answer is \mathbf{D} (four)	$\mathbf{(1)}$
	\boldsymbol{A} is not correct because E and Z isomers of both hex-2-ene and hex-3-ene are possible	
\boldsymbol{B} is not correct because E and Z isomers of both hex-2-ene and hex-3-ene are possible		
\boldsymbol{C} is not correct because E and Z isomers of both hex-2-ene and hex-3-ene are possible		

Question Number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is B $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}\right)$	$\mathbf{(1)}$
	\boldsymbol{A} is not correct because this molecule has a prominent peak at $m / z=43$ in its mass spectrum (due to $\left.\mathrm{CH}_{3} \mathrm{CO}^{+}\right)$	
	C is not correct because this molecule has a prominent peak at $m / z=43$ in its mass spectrum (due to $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+}\right)$ \boldsymbol{D} is not correct because this molecule has a prominent peak at $m / z=43$ in its mass spectrum (due to $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}\right)$	

Question Number	Answer	Mark
16	The only correct answer is $\mathbf{A}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}\right)$ B is not correct because this molecule does not have a triple bond so no peak at $2250 \mathrm{~cm}^{-1}$ C is not correct because this molecule does not have an O-H or N-H bond so no peak at $3415 \mathrm{~cm}^{-1}$ D is not correct because this molecule does not have a triple bond so no peak at $2250 \mathrm{~cm}^{-1}$	(1)

Question Number	Answer	Mark
17(a)	The only correct answer is B (all molecules possess some energy) \boldsymbol{A} is not correct because all molecules possess some energy C is not correct because the temperature cannot be 0 K \boldsymbol{D} is not correct because this relates to the activation energy, and rate, for a chemical reaction	(1)

| Question
 Number | Answer |
| :--- | :--- | :---: |
| $\mathbf{1 7 (b)}$ | The only correct answer is B (decreases, shifts to the left)
 A is not correct because the area under the curve decreases (as there are fewer molecules)
 C is not correct because the area under the curve decreases (as there are fewer molecules) and the peak shifts to the
 left (as the molecules have less energy)
 \boldsymbol{D} is not correct because the peak shifts to the left (as the molecules have less energy) |

(Total for Section $\mathbf{A}=\mathbf{2 0}$ marks)

Section B

Question Number	Answer		Additional Guidance	Mark
18(a)	An explanation that makes reference to the following points: - disproportionation (of chlorine) - (oxidation numbers of chlorine) 0 (in Cl_{2}) and $(+) 1$ in $\mathrm{Ca}(\mathrm{ClO})_{2}$ and -1 in CaCl_{2} - oxidised from 0 to +1 and reduced from 0 to -1	(1) (1) (1)	Ignore redox Do not award disproportionation of calcium/oxygen/hydrogen Allow annotations on the equation Allow 1- Do not award if any other element is also changing oxidation number Allow oxidation is increase in oxidation number and reduction is decrease in oxidation number TE on oxidation numbers given in M 2 , even for $\mathrm{Ca} / \mathrm{O} / \mathrm{H}$ Ignore any reference to oxidising agents / reducing agents Ignore any reference to electron transfer	(3)

Question Number	Answer	Additional Guidance	Mark
18(b)	An answer that makes reference to the following points: - M_{r} of $\mathrm{Ca}(\mathrm{ClO})_{2}$ - percentage atom economy (by mass)	Examples of calculation: $M_{\mathrm{r}}=40.1+2 \times 16.0+2 \times 35.5=143.1$ Allow 143.0 / 143 $\frac{143.1}{(143.1+111.1+2 \times 18.0)} \times 100=49.311(\%)$ Allow use of 143 for M_{r} of $\mathrm{Ca}(\mathrm{ClO})_{2}$ and 111 for M_{r} of CaCl_{2} giving 49.310(\%) OR $\frac{143.1}{(2 \times 74.1+2 \times 71.0)} \times 100=49.311(\%)$ Allow use 143 for M_{r} of $\mathrm{Ca}(\mathrm{ClO})_{2}$ and 74 for M_{r} of $\mathrm{Ca}(\mathrm{OH})_{2}$ giving 49.310(\%) TE on M_{r} of $\mathrm{Ca}(\mathrm{ClO})_{2}$ Ignore SF except 1SF Correct answer with some working scores (2)	(2)

Question Number	Answer	Additional Guidance	Mark
19(a)	An answer that makes reference to the following points: - skeletal formula of 2-methylpentan-2-ol - skeletal formula of 3-methylpentan-3-ol - skeletal formula of 2,3-dimethylbutan-2-ol	Example of correct skeletal formulae in any order: Penalise non-skeletal formulae once only Ignore bond lengths and bond angles Ignore names, even if incorrect Ignore connectivity	(3)

Question Number	Answer	Additional Guidance	Mark
19(b)(i)	An answer that makes reference to the following points:	Accept 3,3-dimethyl-1-butanol Do not award 3,3-dimethylbutanol Do not award 3-dimethylbutan-1-ol	(1)

Question Number	Answer	Additional Guidance	Mark
19(b)(ii)	An explanation that makes reference to the following points: - (alcohol B has) stronger London forces - (as) greater (contact) surface area (between molecules)	M1 and M2 independent marks Accept reverse argument Ignore any reference to hydrogen bonding / permanent dipole-permanent dipole forces Accept stronger dispersion / instantaneous-induced dipole / temporary-induced dipole forces Allow stronger van der Waals' forces Allow "more" / "greater" for "stronger" Ignore just stronger intermolecular forces Allow more points of contact Allow less branched / fewer side chains / fewer methyl groups Allow longer carbon chain Ignore straight-chained Ignore pack more closely Do not award more electrons Do not award more/stronger covalent bonds	(2)

Question Number	Answer	Additional Guidance	Mark
19(b)(iii)	An explanation that makes reference to the following points: M1 - London forces - London forces between B and ethanol (aiding complete solubility) M2 - hydrogen bonds - hydrogen bonds between B and water (aiding slight solubility) M3 - comparison of intermolecular forces formed and broken - intermolecular forces (formed) between B and ethanol are stronger than / similar in strength to those in B and/or in ethanol OR intermolecular forces (formed) between B and water are weaker than those in B and/or in water	Accept dispersion / instantaneous-induced dipole / temporary-induced dipole for London Allow just London forces in B (limit solubility in water) Ignore just London forces in ethanol Accept H-bond for hydrogen bond Ignore just B, ethanol and water all have hydrogen bonding Ignore any reference to strength / number of hydrogen bonds Accept reverse arguments in M3 London forces between B and ethanol are stronger than / similar to those in B scores (2) for M1 and M3 Hydrogen bonds between B and water are weaker than hydrogen bonds in water scores (2) for M2 and M3 Hydrogen bonds between B and water are weaker than London forces in B scores (3)	(3)

Question Number	Answer	An answer that makes reference to the following points:	Mark independently Example of correct structures: Accept any type of structure Ignore connectivity Ignore bond lengths and bond angles Ignore names, even if incorrect Ignore inorganic products even if incorrect Do not award additional incorrect organic products in each reaction (but ignore aldehyde in M1) Penalise incorrect carbon chains once only
• structure of product from Reaction 1			

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 0 (a)}$	An answer that makes reference to the following points:		(1)
	\bullet hydrogen chloride $/ \mathrm{HCl}((\mathrm{g}))$	Illow hydrochloric acid $/ \mathrm{HCl}(\mathrm{aq})$	
		Ignore any reference to conditions	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 0 (b)}$	An answer that makes reference to the following points:	Accept displayed or skeletal formula	(1)
	$\bullet \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	Ignore any inorganic products, even if incorrect Ignore any reagents / conditions	
		Do not award any additional organic products	
		Do not award $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$	

Question Number	Answer		Additional Guidance	Mark
20(c)(i)	An answer that makes reference to the following points: - 8 electrons surrounding central N atom or 8 electrons surrounding both terminal N atoms - 8 electrons surrounding all N atoms and a total of 16 outer shell electrons	(1)	Mark independently Examples of correct diagram: Do not award incorrect charge Allow any symbols to represent outer shell electrons and allow any combination, eg Allow bonded electrons to be shown as pairs, eg Allow circles to indicate outer shells Ignore inner shell electrons Ignore lines representing bonds Ignore displayed diagrams	(2)

Question Number	Answer		Additional Guidance	Mark
20(c)(ii)	An answer that makes reference to the following points: - lone pair on N of $\mathrm{N}_{3}-$ and curly arrow from lone pair to C of $\mathrm{C}-\mathrm{Br}$ - dipole shown on $\mathrm{C}-\mathrm{Br}$ and curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to $(\delta-) \mathrm{Br}$ - organic product and bromide ion	(1) (1) (1)	Example of correct mechanism: Penalise half-headed arrows once in M1 and M2 Do not award curly arrow from negative charge on $\mathrm{N}_{3}-$ Allow $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$ for organic product Allow $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{3}$ for organic product Ignore structure of N_{3} group if displayed Do not award charged organic product Allow $\mathrm{K}^{(+)} \mathrm{Br}^{(-)}$ Ignore K^{+}spectator ion Do not award $\mathrm{K}-\mathrm{Br}$ Do not award Br atom Do not award any additional inorganic product	(3)

Question Number	Answer	Additional Guidance	Mark
20(d)(i)	An answer that makes reference to the following points: - alcohol (solvent) - under (high) pressure	Accept ethanol Allow aqueous ethanol Ignore concentrated/excess NH_{3} Do not award $\mathrm{KOH} / \mathrm{NaOH} /$ alkaline Allow any stated pressure above $100 \mathrm{kPa} / 1 \mathrm{~atm}$ Ignore any reference to heat	(2)

Question Number	Answer	Additional Guidance	Mark
20(d)(ii)	An answer that makes reference to one of the following points: - secondary amine / tertiary amine / quarternary (ammonium) salt may form	Allow further substitution may occur Allow product may react with 1-bromopropane Allow 1-bromopropane/haloalkane in excess Allow $\mathrm{NH}_{3} /$ ammonia not in excess Ignore just amine reacts further Ignore just side products / side reactions Do not award any reference to atom economy	(1)

Indicative points:

- IP1: thermal stability increases down Group (2)
- IP2: ionic radius / size of ions increases (down groups) and
polarising power (of cations) decreases / charge remains the same $/ 2+$
- IP3: N-O breaks less easily / requires more energy to break (down groups)
- IP4: LiNO_{3} decomposes like Group 2 nitrates OR
Group 1 nitrates other than lithium form (metal) nitrite/ nitrate(III) $/ \mathrm{MNO}_{2}$
- IP5: equation for thermal decomposition of NaNO_{3}
- IP6: equation for thermal decomposition of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Accept reverse arguments
Allow decompose less easily Ignore any stated trend for Group 1

Accept charge density of (cat)ions decreases (down groups)
Ignore atomic radius

Allow anion/nitrate (ion) for $\mathrm{N}-\mathrm{O}$
Allow less polarised / less distorted for breaks less easily
Do not award nitrate molecule
Do not award ionic bonds break less easily
Allow LiNO_{3} decomposes to form lithium oxide and/or nitrogen dioxide
Allow partial/unbalanced equation, eg
$\mathrm{LiNO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+\mathrm{NO}_{2}$
Ignore just brown fumes
$2 \mathrm{NaNO}_{3} \rightarrow 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}$
Allow mulitples
Allow equation for any Group 1 nitrate except LiNO_{3}
$2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{MgO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
Allow mulitples
Allow equation for any Group 2 nitrate Ignore state symbols

Section C

Question Number	Answer	Additional Guidance	Mark
22(a)(i)	An answer that makes reference to one of the following points: - shifts position of equilibrium to the right OR increases the (equilibrium) yield (of H_{2})	Ignore to increase rate (of forward reaction) Ignore cheaper to have steam in excess Ignore to react with most of the CH_{4} Allow to increase yield (of CO / products) Do not award so all of the CH_{4} reacts / so reaction goes to completion Do not award to increase the moles of gas/pressure	(1)

Question Number	Answer	Additional Guidance	Mark
22(a)(ii)	An answer that makes reference to the following points: $\bullet T_{1}$ (is higher) and (first reaction is) endothermic	Accept reverse argument	(1)
		Allow positive enthalpy change for endothermic Allow (first reaction) absorbs (heat) energy for endothermic Ignore just +206 for endothermic Ignore correct reference to effect of temperature on equilibrium yields Do not award absorbs more energy to break (reactant) bonds	

Question Number	Answer	Additional Guidance	Mark
22(a)(iii)	An answer that makes reference to the following point:	Example of correct equation:	
	\bullet overall equation for Stage 1	$\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{2}+\mathrm{CO}_{2}$	
Allow \rightleftharpoons for \rightarrow			
Allow multiples			
Ignore state symbols even if incorrect			
Ignore working			
Do not award uncancelled CO	(1)		

Question Number	Answer	Additional Guidance	Mark
22(b)(i)	An answer that makes reference to one of the following points: - to reduce greenhouse gas emissions OR to sell (to increase profit) OR to prevent poisoning of the catalyst(s) in later stages	Ignore any reference to position of equilibrium in Stage 1 reactions Allow CO_{2} / it is a greenhouse gas Allow CO_{2} / it causes global warming / climate change Ignore (to make the process more) carbon neutral / to reduce carbon footprint Ignore CO_{2} is harmful to the environment Ignore just to reduce air pollution Do not award reference to ozone layer	(1)

Question Number	Answer	Additional Guidance	Mark
22(b)(ii)	An answer that makes reference to the following point:	Accept acid-base	
• neutralisation	Ignore addition Ignore reversible Ignore formation	(1)	
		Do not award hydration Do not award redox	

Question Number	Answer	Additional Guidance	Mark	
22(b)(iii)	An answer that makes reference to the following points:	Example of displayed formula:	(1)	
				Insore bond angles and bond lengths

Question Number	Answer	Additional Guidance	Mark
22(c)	An answer that makes reference to the following points: - advantage of using high pressure - disadvantage of using high pressure	Examples of advantage: shifts position of equilibrium to right / products OR increases (equilibrium) yield (of NH_{3}) OR increases rate OR increases occupation of catalyst active sites Ignore any reference to collisions Examples of disadvantage: requires more energy OR costs more for energy/fuel OR requires expensive/specialist equipment (to withstand pressure) Ignore just expensive / costs more Ignore dangerous / risk of explosion	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 2 (d) (i i) ~}$	An answer that makes reference to one of the following points: $\bullet \quad$ less energy (needed) / (works at a) lower temperature OR less fuel (required)	Ignore lowers E_{a} Ignore catalyst can be reused Ignore reduces carbon footprint $/$ carbon emissions	(1)

$\begin{array}{c}\text { Question } \\ \text { Number }\end{array}$	Answer	Additional Guidance	Mark
22(e)(i)	$\begin{array}{l}\text { An answer that makes reference to one of the } \\ \text { following points: }\end{array}$	$\begin{array}{l}\text { - increase rate } \\ \text { OR not award to increase yield } \\ \text { Do not award to shift position of equilibrium (to left / right) } \\ \text { Do not award reverse reaction is endothermic } \\ \text { Allow to increase the number of successful collisions } \\ \text { Ignore to increase collision frequency }\end{array}$	(1)

Question Number	Answer	Additional Guidance	Mark
22(e)(ii)	An answer that makes reference to the following points: - (forward reaction is highly) exothermic OR (forward reaction) releases (a lot of) heat (energy)	Ignore any reference to catalysis Allow thermal energy for heat Do not award NH_{3} from Stage 2 is hot Do not award 1100 K is not very high	(1)

Question Number	Answer	Additional Guidance	Mark
22(f)	An explanation that makes reference to the following points: - NO_{2} removed (in second reaction) - shifting position of equilibrium (in first reaction) to right and increasing the yield $\left(\right.$ of $\left.\mathrm{NO}_{2}\right)$	Allow (as) NO formed (in second reaction) Ignore HNO_{3} is formed (in second reaction) Ignore reaction is irreversible Ignore NO_{2} dissolves Allow shifting reaction to right and increasing yield (of NO_{2})	(2)

Question Number	Answer		Additional Guidance	Mark
22(g)(i)	An answer that makes reference to the following points: - left hand side of enthalpy cycle - right hand side of enthalpy cycle		Example of completed enthalpy cycle: Do not award omission/incorrect state symbols Do not award multiples Do not award numbers in opposite order Do not award -25.6 Do not award +365.6 / 365.6	(2)

Question Number	Answer	Additional Guidance	Mark		
22(g)(ii)	An answer that makes reference to the following point:	Example of calculation:	(1)		
	\bullet calculation of $\Delta_{\mathrm{r}} H$			\quad	$\Delta_{\mathrm{r}} H=-(-32.6)-(-220.2)+(-365.6)+25.6$
:---					
$=-87.2 /-87\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$					
Allow omission of units					
Allow kJ					
TE on cycle in $(\mathrm{g})(\mathrm{i})$					

Question Number	Answer	Additional Guidance	Mark
22(h)	An answer that makes reference to two of the following points: - cheaper to produce $\mathrm{H}_{2} / \mathrm{NH}_{3} / \mathrm{NO} / \mathrm{HNO}_{3}$ than to purchase (from other suppliers) OR - (better) knowledge of chemical purity / chemical quality OR - lower transportation / travel costs (between sites) OR - prevents (more) chemical waste through transfer losses OR - energy produced in exothermic reactions can be used (in endothermic processes) OR - smaller workforce required OR - less land required OR - saves time so cheaper operational costs	Ignore just cheaper (operational costs) Ignore just less energy required Ignore just saves time / makes product faster Ignore just chemicals need transporting Ignore just chemical lost through transportation Ignore just higher yield Do not award higher atom economy Allow lower energy costs Allow reduces carbon footprint Allow lower workforce costs Allow saves building / maintenance costs	(2)

