Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided – there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed – you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over
SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box 🔆. If you change your mind, put a line through the box 🔆 and then mark your new answer with a cross 🔆.

1 Propanone reacts with iodine in acidic solution according to the equation

\[
\text{CH}_3\text{COCH}_3(\text{aq}) + \text{I}_2(\text{aq}) \rightarrow \text{CH}_3\text{COCH}_2\text{I}(\text{aq}) + \text{H}^+(\text{aq}) + \text{I}^-(\text{aq})
\]

Which method would not be suitable for obtaining the rate of this reaction?

- [] A Colorimetry.
- [] B Measuring the increase in pH of the solution.
- [] C Measuring the increase in the infrared absorption for the C–I bond.
- [] D Quenching followed by titrating with sodium thiosulfate.

(Total for Question 1 = 1 mark)

2 For the reaction

\[
2\text{HgCl}_2(\text{aq}) + \text{C}_2\text{O}_4^{2-}(\text{aq}) \rightarrow 2\text{Cl}^- (\text{aq}) + 2\text{CO}_2(\text{g}) + \text{Hg}_2\text{Cl}_2(\text{s})
\]

the rate equation is

\[
\text{rate} = k[\text{HgCl}_2(\text{aq})][\text{C}_2\text{O}_4^{2-}(\text{aq})]^2
\]

The concentrations of both \(\text{HgCl}_2 \) and \(\text{C}_2\text{O}_4^{2-} \) are increased by a factor of three. The rate of reaction increases by a factor of

- [] A 3
- [] B 9
- [] C 12
- [] D 27

(Total for Question 2 = 1 mark)
3. To determine the activation energy, \(E_a \), for a reaction, a graph was plotted of \(\ln k \) against \(1/T \), where \(k \) is the rate constant.

The Arrhenius equation is

\[
\ln k = -\frac{E_a}{RT} + \text{constant}
\]

The gradient of the graph is equal to

- A) \(-E_a\)
- B) \(-\frac{E_a}{R}\)
- C) \(-\frac{E_a}{T}\)
- D) \(-\frac{E_a}{RT}\)

(Total for Question 3 = 1 mark)

4. Which is correct for standard molar entropy?

<table>
<thead>
<tr>
<th>Highest entropy</th>
<th>Medium entropy</th>
<th>Lowest entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Hydrogen</td>
<td>Nitrogen</td>
<td>Iron</td>
</tr>
<tr>
<td>B Nitrogen</td>
<td>Iron</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>C Nitrogen</td>
<td>Hydrogen</td>
<td>Iron</td>
</tr>
<tr>
<td>D Iron</td>
<td>Nitrogen</td>
<td>Hydrogen</td>
</tr>
</tbody>
</table>

(Total for Question 4 = 1 mark)

5. The Haber process is used to make ammonia from nitrogen and hydrogen at 450°C.

\[
\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) \quad \Delta H = -92 \text{ kJ mol}^{-1}
\]

When the temperature of the system is increased,

- A) \(K_a \) decreases.
- B) \(K_a \) increases.
- C) \(K_a \) stays the same.
- D) \(K_a \) increases and then decreases.

(Total for Question 5 = 1 mark)
6. When magnesium hydroxide dissolves in water, the following equilibrium is established.

\[\text{Mg(OH)}_2(s) \rightleftharpoons \text{Mg}^{2+}(aq) + 2\text{OH}^-(aq) \]

The expression for the equilibrium constant, \(K_c\), is

- **A** \([\text{Mg}^{2+}(aq)] \times 2[\text{OH}^- (aq)]\)
- **B** \([\text{Mg}^{2+}(aq)] \times [\text{OH}^- (aq)]^2\)
- **C** \[\frac{[\text{Mg}^{2+}(aq)] \times 2[\text{OH}^- (aq)]}{[\text{Mg(OH)}_2(s)]}\]
- **D** \[\frac{[\text{Mg}^{2+}(aq)] \times [\text{OH}^- (aq)]^2}{[\text{Mg(OH)}_2(s)]}\]

(Total for Question 6 = 1 mark)

7. Energy is given out when one mole of gaseous magnesium ions is hydrated.

\[\text{Mg}^{2+}(g) + \text{aq} \rightarrow \text{Mg}^{2+}(aq) \]

This is more exothermic than the corresponding value for barium ions, Ba\(^{2+}\), because the

- **A** ionic radius of Mg\(^{2+}\) is less than that of Ba\(^{2+}\).
- **B** ionisation energy of magnesium is greater than that of barium.
- **C** lattice energy of magnesium oxide is more exothermic than that of barium oxide.
- **D** solubility of magnesium hydroxide in water is less than that of barium hydroxide.

(Total for Question 7 = 1 mark)
8. The graph shows the yield of product in a gaseous equilibrium at different temperatures and pressures.

The forward reaction is

- **A** exothermic, and there are more moles of gas on the right-hand side.
- **B** endothermic, and there are more moles of gas on the right-hand side.
- **C** exothermic, and there are fewer moles of gas on the right-hand side.
- **D** endothermic, and there are fewer moles of gas on the right-hand side.

(Total for Question 8 = 1 mark)

9. An aqueous solution contains 4.0 g of sodium hydroxide in 250 cm3 of solution.

\[K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6} \quad \text{Molar mass of NaOH} = 40 \text{ g mol}^{-1} \]

The pH of the solution is

- **A** 13.0
- **B** 13.4
- **C** 13.6
- **D** 13.9

(Total for Question 9 = 1 mark)
10 A solution containing HCN and KCN is a buffer. When a small amount of acid is added, the solution acts as a buffer because

- **A** hydrogen ions in the acid combine with cyanide ions to make HCN.
- **B** hydrogen ions in the acid combine with HCN to make H_2CN^+.
- **C** HCN dissociates to make more CN^- ions.
- **D** the hydrogen ions in the acid prevent dissociation of the HCN.

(Total for Question 10 = 1 mark)

11 When 0.1 mol of hydrogen and 0.1 mol of iodine were allowed to react according to the equation

$$\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \rightleftharpoons 2\text{HI}(\text{g})$$

30% of the hydrogen was found to have been converted at equilibrium.

The number of moles of each gas present at equilibrium is

<table>
<thead>
<tr>
<th></th>
<th>Hydrogen</th>
<th>Iodine</th>
<th>Hydrogen iodide</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.03</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>B</td>
<td>0.03</td>
<td>0.03</td>
<td>0.14</td>
</tr>
<tr>
<td>C</td>
<td>0.07</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>D</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
</tr>
</tbody>
</table>

(Total for Question 11 = 1 mark)

12 Which compound can show both geometric and optical isomerism?

- **A** $(\text{CH}_3)_2\text{C}\equiv\text{CHCH(\text{CH}_3)}\text{CH}_2\text{CH}_3$
- **B** $\text{CH}_3\text{CH}_2\text{CH}═\text{CHCH(\text{CH}_3)}\text{CH}_2\text{CH}_3$
- **C** $(\text{CH}_3)_2\text{C}═\text{C(\text{CH}_3)}_2$
- **D** $\text{CH}_3\text{CH}_2\text{CH}═\text{CHCH}_2\text{CH(\text{CH}_3)}_2$

(Total for Question 12 = 1 mark)
13 Which set of reagents is not suitable for the step indicated?

\[\text{CH}_3\text{COCH}_3 \quad \text{Step 1} \quad \text{CH}_3\text{C} \equiv \text{CN} \quad \text{Step 2} \quad \text{CH}_2\text{C} \equiv \text{CN} \]

\[\text{CH}_2\equiv \text{C} \equiv \text{COOCH}_3 \quad \text{Step 3} \quad \text{CH}_2\equiv \text{C} \equiv \text{COOH} \]

- A Step 1: HCN and KCN
- B Step 2: hot ethanolic KOH
- C Step 3: warm aqueous H$_2$SO$_4$
- D Step 4: CH$_3$OH with an acid catalyst

(Total for Question 13 = 1 mark)

14 The molecule shown has three functional groups labelled x, y and z.

Which of the functional groups can undergo nucleophilic attack?

- A x, y and z
- B x and z only
- C x only
- D z only

(Total for Question 14 = 1 mark)
15 What is the formula of the pale yellow solid formed when propanone reacts with iodine in the presence of sodium hydroxide?

☐ A NaI
☐ B CH₃COCH₂I
☐ C CH₃I
☐ D CHI₃

(Total for Question 15 = 1 mark)

16 Butanone can be distinguished from butanoic acid by the addition of

☐ A Fehling's solution and warming.
☐ B Tollens' reagent and warming.
☐ C 2,4-dinitrophenylhydrazine solution.
☐ D acidified potassium dichromate(VI) solution and refluxing.

(Total for Question 16 = 1 mark)

17 Which could be used to make CH₃CONHCH₃?

☐ A CH₃COOCH₃ and NH₃
☐ B CH₃CONH₂ and CH₃NH₂
☐ C CH₃COO⁻Na⁺ and CH₃NH₂
☐ D CH₃COCl and CH₃NH₂

(Total for Question 17 = 1 mark)

18 Which reaction may be used to make a carboxylic acid in a single step?

☐ A Hydrolysis of an ester with hydrochloric acid.
☐ B Hydrolysis of an ester with sodium hydroxide.
☐ C Reaction of acidified potassium manganate(VII) with an alkene.
☐ D Reaction of an acyl chloride with ammonia.

(Total for Question 18 = 1 mark)
19 The mass spectrum of ethanoyl chloride would **not** be expected to have a peak at the \(m/e \) value of

- [] **A** 35.5
- [] **B** 37
- [] **C** 43
- [] **D** 78

(Total for Question 19 = 1 mark)

20 A ketone which would not be expected to have a peak in its mass spectrum at \(m/e = 57 \) is

- [] **A** butanone, \(\text{CH}_{3}\text{CH}_{2}\text{COCH}_{3} \)
- [] **B** 3-methylbutanone, \((\text{CH}_{3})_{2}\text{CHCOCH}_{3} \)
- [] **C** pentan-3-one, \(\text{CH}_{3}\text{CH}_{2}\text{COCH}_{2}\text{CH}_{3} \)
- [] **D** hexan-3-one, \(\text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{COCH}_{2}\text{CH}_{3} \)

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS
21 Methanol has been proposed as a carbon-neutral fuel because it can be synthesised from carbon dioxide, as shown in the equation

\[\text{CO}_2(g) + 3\text{H}_2(g) \rightarrow \text{CH}_3\text{OH}(g) + \text{H}_2\text{O}(g) \]

(a) Standard enthalpy change of formation and standard molar entropy data for the reactants and products are shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>CO₂(g)</th>
<th>H₂(g)</th>
<th>CH₃OH(g)</th>
<th>H₂O(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH²⁰⁰ /kJ mol⁻¹</td>
<td>−394</td>
<td>0</td>
<td>−201</td>
<td>−242</td>
</tr>
<tr>
<td>S²⁰⁰ /J K⁻¹ mol⁻¹</td>
<td>214</td>
<td>131</td>
<td>238</td>
<td>189</td>
</tr>
</tbody>
</table>

(i) Calculate the standard enthalpy change for this reaction. (2)

(ii) Calculate the standard entropy change in the system, ΔS⁰-system, for this reaction. (2)
(iii) Calculate the total entropy change, ΔS_{total}, for this reaction at 298K.

(iv) Calculate the highest temperature at which the reaction is feasible.

(v) State why the industrial process is carried out at a higher temperature than you have calculated.
(b) (i) Write the equation for the complete combustion of methanol in the gas phase. State symbols are not required.

(ii) Suggest why this combustion reaction in the gas phase is likely to be thermodynamically feasible at all temperatures. Calculations are not required.

(c) Give two reasons why methanol, synthesised from carbon dioxide and hydrogen, may not be a completely carbon-neutral fuel.

(Total for Question 21 = 16 marks)
This question is about three colourless liquids butanal, pentane and propenoic acid. The bottles have lost their labels.

(a) Propenoic acid is the simplest carboxylic acid containing a carbon to carbon double bond.

(i) Draw the displayed formula of propenoic acid showing all the bonds.

(ii) Propenoic acid reacts with methanol at a temperature of 100 °C in the presence of an acid catalyst.

Name the product of this reaction and draw its skeletal formula.

(iii) Under appropriate conditions, propenoic acid will react with lithium tetrahydridoaluminate(III) (LiAlH₄).

Identify the conditions necessary for this reaction and give the structural formula of the expected product.
(iv) The polymerisation of propenoic acid forms poly(propenoic acid), which is used in the manufacture of superabsorbents.

Draw the structure of poly(propenoic acid) showing two repeat units.

(1)

(b) The three liquids can be identified by their boiling temperatures.

(i) Complete the table with the boiling temperatures of butanal and pentane in °C and the number of electrons in propenoic acid. Use the Data Booklet where necessary.

(ii) Explain the differences in boiling temperature of these three compounds using the information in the table and their structures. A detailed explanation of the forces involved is not required.

<table>
<thead>
<tr>
<th></th>
<th>butanal</th>
<th>pentane</th>
<th>propenoic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling temperature / °C</td>
<td></td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>Number of electrons</td>
<td>40</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>
(c) Chemical tests can also be used to identify two of the liquids, and hence, by elimination, the third.

Give **two** chemical tests and the expected positive results. The use of indicators will **not** be accepted as a chemical test.

(4)
(d) The three liquids can also be identified using infrared spectroscopy.

(i) Spectrum A contains very few peaks.

Identify which of the three liquids gives this spectrum and explain why it has fewer peaks than the other spectra.
(ii) Spectra **B** and **C** are the infrared spectra of the other two liquids.

Using information from the Data Booklet, identify the **bonds** responsible for the peaks labelled **P**, **Q** and **R**. Hence state which spectrum is given by which liquid.

(Total for Question 22 = 20 marks)
Compound X can be formed by a dimerisation reaction where two molecules of ethanal link together, as shown in the equation.

\[2\text{CH}_3\text{CHO} \rightarrow \text{CH}_3\text{CH(OH)}\text{CH}_2\text{CHO} \]

Compound X

(a) Give the name of compound X.

(b) The following three-step mechanism has been suggested for this reaction.

Steps 2 and 3 of this mechanism have some similarities to the reaction of aldehydes with hydrogen cyanide in the presence of potassium cyanide.

Step 1

Step 2

Step 3
(i) Deduce the role of ethanal in Step 1.

(ii) Complete Step 2 of the mechanism showing the relevant curly arrows.

(iii) Deduce the type and mechanism of the overall reaction.

(iv) State the overall role of the hydroxide ion, OH\(^{-}\), in the suggested mechanism. Justify your answer.
(v) Explain why the sample of X produced by the reaction in (b) does not rotate the plane of plane-polarised light.

(2)

(c) At low concentrations of hydroxide ions, OH\(^-\), the rate equation for this reaction is

\[
\text{rate} = k[\text{CH}_3\text{CHO}][\text{OH}^-]
\]

When the concentration of ethanal was 0.20 mol dm\(^{-3}\) and the concentration of sodium hydroxide was 0.040 mol dm\(^{-3}\), the rate of the reaction at 298 K was 8.8 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}.

(i) Calculate a value for the rate constant at this temperature. Include units in your answer.

(2)

(ii) Give a reason why the rate equation suggests that Step 1 is the rate-determining step for this reaction.

(1)

(Total for Question 23 = 13 marks)
SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

24 Ammonia is manufactured from nitrogen and hydrogen.

\[\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) \]

(a) *(i)* In an experiment, 1 mol of nitrogen and 3 mol of hydrogen were placed in a sealed vessel.

At a temperature of 450 K and a pressure of 2 atm, the system reached equilibrium when 20% of the nitrogen had been converted into ammonia.

Calculate the value of the equilibrium constant \(K_p \) for this reaction at 450 K, giving units in your answer.

(6)
(ii) Give the equation that relates K_p to ΔS_{total} and use your equation and your answer to (a)(i) to calculate the total entropy change for the reaction at 450 K.

\[R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} \]

(b) Ammonia is a weak base which reacts with hydrochloric acid according to the equation

\[
\text{NH}_3(aq) + \text{HCl}(aq) \rightarrow \text{NH}_4\text{Cl}(aq)
\]

25.0 cm3 of aqueous ammonia with a concentration of 1.00 mol dm$^{-3}$ was placed in a conical flask.

It was titrated with hydrochloric acid with a concentration of 0.625 mol dm$^{-3}$.

(i) Calculate the volume of the acid required to react exactly with the aqueous ammonia.
(ii) Aqueous ammonium chloride is acidic.
Write an ionic equation to show the acidic behaviour of the ammonium ion.
State symbols are not required.

(iii) Write an expression for K_a for this dissociation.

(iv) When all of the ammonia has just reacted with hydrochloric acid the concentration of the ammonium chloride solution is 0.385 mol dm$^{-3}$. Calculate the pH of this solution.

$[K_a = 5.6 \times 10^{-10}$ mol dm$^{-3}$]
(v) Using your answers to (b)(i) and (b)(iv), draw the titration curve showing the change in pH when 50.0 cm3 of 0.625 mol dm$^{-3}$ hydrochloric acid solution is added to 25.0 cm3 of 1.00 mol dm$^{-3}$ ammonia solution.

The pH of 1.00 mol dm$^{-3}$ ammonia solution is 11.6.
(vi) Explain, by referring to the Data Booklet, whether or not thymol blue (base) would be a suitable indicator for this titration.

(Total for Question 24 = 21 marks)

TOTAL FOR SECTION C = 21 MARKS
TOTAL FOR PAPER = 90 MARKS
The Periodic Table of Elements

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>beryllium</td>
<td>Sc</td>
<td>titanium</td>
<td>V</td>
<td>chromium</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
</tr>
<tr>
<td>Be</td>
<td>sodium</td>
<td>Ti</td>
<td>titanium</td>
<td>Cr</td>
<td>manganese</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
</tr>
<tr>
<td>Na</td>
<td>magnesium</td>
<td>Al</td>
<td>aluminium</td>
<td>Si</td>
<td>silicon</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td>Mg</td>
<td>potassium</td>
<td>Ca</td>
<td>calcium</td>
<td>Sc</td>
<td>scandium</td>
<td>Ti</td>
<td>vanadium</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
</tr>
<tr>
<td>Ca</td>
<td>rubidium</td>
<td>Sr</td>
<td>strontium</td>
<td>Y</td>
<td>yttrium</td>
<td>Zr</td>
<td>niobium</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
</tr>
<tr>
<td>Sr</td>
<td>cesium</td>
<td>Ba</td>
<td>barium</td>
<td>La</td>
<td>lanthanum</td>
<td>Ce</td>
<td>praseodymium</td>
<td>Nd</td>
<td>Pm</td>
<td>Sm</td>
<td>Eu</td>
</tr>
<tr>
<td>Ba</td>
<td>francium</td>
<td>Ra</td>
<td>radium</td>
<td>Act</td>
<td>actinium</td>
<td>Th</td>
<td>protactinium</td>
<td>U</td>
<td>Pu</td>
<td>Am</td>
<td>Cm</td>
</tr>
</tbody>
</table>

Key
- Relative atomic mass
- Atomic symbol
- Atomic (proton) number

Elements with atomic numbers 112-116 have been reported but not fully authenticated.

* Lanthanide series
* Actinide series