Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided – there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed – you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.
SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box. If you change your mind, put a line through the box and then mark your new answer with a cross.

1 Silicon dioxide reacts with hydrogen fluoride to form water and a compound with the formula H₂SiF₆.

\[\text{SiO}_2 + \text{HF} \rightarrow \text{H}_2\text{SiF}_6 + \text{H}_2\text{O} \]

The mole ratio of HF to H₂O in the balanced equation is

- [] A 1:2
- [] B 3:1
- [] C 2:1
- [] D 6:1

(Total for Question 1 = 1 mark)

2 For safety reasons, the concentration of lead in paint should not exceed 600 parts per million (ppm) by mass.

Therefore, the mass of lead in one kilogram of paint should not exceed

- [] A 0.06 g
- [] B 0.60 g
- [] C 6.0 g
- [] D 60 g

(Total for Question 2 = 1 mark)

3 The solution containing the greatest number of chloride ions is

- [] A 10 cm³ of 1.00 × 10⁻² mol dm⁻³ AlCl₃
- [] B 20 cm³ of 1.50 × 10⁻² mol dm⁻³ MgCl₂
- [] C 30 cm³ of 1.50 × 10⁻² mol dm⁻³ HCl
- [] D 10 cm³ of 2.50 × 10⁻² mol dm⁻³ CaCl₂

(Total for Question 3 = 1 mark)
4 Which statement is true about the ions $^{55}\text{Mn}^{2+}$ and $^{56}\text{Fe}^{2+}$?

- **A** $^{55}\text{Mn}^{2+}$ is deflected less in a mass spectrometer than $^{56}\text{Fe}^{2+}$.
- **B** They have the same number of electrons.
- **C** $^{55}\text{Mn}^{2+}$ has more protons than $^{56}\text{Fe}^{2+}$.
- **D** They have the same number of neutrons.

(Total for Question 4 = 1 mark)

5 10 cm³ of a 1.00×10^{-2} mol dm⁻³ solution needs to be diluted to make the concentration 5.00×10^{-4} mol dm⁻³.

What volume of water, in cm³, should be added?

- **A** 20
- **B** 40
- **C** 190
- **D** 200

(Total for Question 5 = 1 mark)

6 The Avogadro constant is 6.0×10^{23} mol⁻¹.

The number of **atoms** in 15 g of nitrogen monoxide, NO, is

- **A** 3.0×10^{23}
- **B** 6.0×10^{23}
- **C** 2.4×10^{24}
- **D** 9.0×10^{24}

(Total for Question 6 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.
7 Nitrogen monoxide reacts with oxygen to form nitrogen dioxide.

\[2\text{NO}(g) + \text{O}_2(g) \rightarrow 2\text{NO}_2(g)\]

200 cm\(^3\) of nitrogen monoxide is mixed with 350 cm\(^3\) of oxygen.

What is the total volume, in cm\(^3\), of the gaseous mixture when the reaction is complete?

All volumes are measured at the same temperature and pressure.

- [] A 200
- [] B 350
- [] C 450
- [] D 550

(Total for Question 7 = 1 mark)

8 The first six successive ionisation energies of an element X are given in the table.

<table>
<thead>
<tr>
<th>Ionisation energy</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value / kJ mol(^{-1})</td>
<td>789</td>
<td>1577</td>
<td>3232</td>
<td>4356</td>
<td>16091</td>
<td>19785</td>
</tr>
</tbody>
</table>

The formula of the oxide of X is most likely to be

- [] A XO\(_2\)
- [] B XO\(_3\)
- [] C X\(_2\)O
- [] D X\(_2\)O\(_3\)

(Total for Question 8 = 1 mark)

9 The total number of occupied orbitals in the third quantum shell of a silicon atom in its ground state is

- [] A 2
- [] B 3
- [] C 4
- [] D 5

(Total for Question 9 = 1 mark)
10 Which of these statements is correct?

- A The ionic radii of the alkali metals increase down the group.
- B The ionic radii for the ions Na\(^+\), Mg\(^{2+}\), Al\(^{3+}\) increase across this series.
- C The first ionisation energies of the alkali metals increase down the group.
- D The melting temperatures of successive elements in Period 3 always increase across the period.

(Total for Question 10 = 1 mark)

11 Which compound would be expected to show the greatest covalent character?

- A LiBr
- B LiI
- C KF
- D KCl

(Total for Question 11 = 1 mark)

12 Phosphoric(V) acid, H\(_3\)PO\(_4\), can be made from phosphorus in two stages.

\[\text{P}_4 + 5\text{O}_2 \rightarrow \text{P}_4\text{O}_{10} \]
\[\text{P}_4\text{O}_{10} + 6\text{H}_2\text{O} \rightarrow 4\text{H}_3\text{PO}_4 \]

Data

<table>
<thead>
<tr>
<th>Formula</th>
<th>P(_4)</th>
<th>O(_2)</th>
<th>P(4)O({10})</th>
<th>H(_2)O</th>
<th>H(_3)PO(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molar mass / g mol(^{-1})</td>
<td>124</td>
<td>32</td>
<td>284</td>
<td>18</td>
<td>98</td>
</tr>
</tbody>
</table>

The percentage atom economy, by mass, for the production of phosphoric(V) acid from phosphorus is

- A 58.0
- B 69.0
- C 72.4
- D 100

(Total for Question 12 = 1 mark)
13 This question is about the reaction of nickel(II) carbonate and hydrochloric acid.

\[
\text{NiCO}_3(s) + 2\text{HCl}(aq) \rightarrow \text{NiCl}_2(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l)
\]

(a) The ionic equation for this reaction is

□ A \(\text{NiCO}_3(s) + 2\text{H}^+(aq) \rightarrow \text{Ni}^{2+}(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l) \)

□ B \(\text{Ni}^{2+}(s) + 2\text{Cl}^-(aq) \rightarrow \text{NiCl}_2(aq) \)

□ C \(\text{Ni}^{2+}(s) + 2\text{HCl}(aq) \rightarrow \text{NiCl}_2(aq) + 2\text{H}^+(aq) \)

□ D \(\text{NiCO}_3(s) + 2\text{HCl}(aq) \rightarrow \text{Ni}^{2+}(aq) + 2\text{Cl}^-(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l) \)

(b) Excess hydrochloric acid reacts with 0.20 mol of nickel(II) carbonate.

What is the volume, in dm\(^3\), of gas produced at room temperature and pressure?
(1 mol of any gas occupies 24 dm\(^3\) at room temperature and pressure)

□ A 1.2

□ B 2.4

□ C 4.8

□ D 9.6

(c) What is the minimum volume of hydrochloric acid with a concentration of 4.0 mol dm\(^{-3}\) that reacts with 0.20 mol of nickel carbonate?

□ A 20 cm\(^3\)

□ B 50 cm\(^3\)

□ C 100 cm\(^3\)

□ D 200 cm\(^3\)

(Total for Question 13 = 3 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.
14 When 100 cm3 of 2.0 mol dm$^{-3}$ sodium hydroxide solution is added to 100 cm3 of 2.0 mol dm$^{-3}$ sulfuric acid (an excess) to form sodium sulfate, the temperature rise is 12.5 °C.

Energy transferred (J) = mass \times 4.2 \times temperature change

What is the enthalpy change of the reaction in kJ mol$^{-1}$?

- **A** $\Delta H = \frac{-200 \times 4.2 \times 12.5}{0.4}$
- **B** $\Delta H = -100 \times 4.2 \times 12.5 \times 0.4$
- **C** $\Delta H = \frac{-200 \times 4.2 \times 12.5}{0.2}$
- **D** $\Delta H = -100 \times 4.2 \times 12.5 \times 0.2$

(Total for Question 14 = 1 mark)

15 Hydrogen is manufactured using the reaction

$$\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2$$

The percentage yield of hydrogen in this process is 90%.

The mass of hydrogen, in tonnes, which can be produced from 160 tonnes of methane is

- **A** 27
- **B** 54
- **C** 60
- **D** 67

(Total for Question 15 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.
16 The repeat unit of a polymer is shown.

What is the systematic name of the monomer which forms this polymer?

- A 2-ethylbut-2-ene
- B 2,3-dimethylbut-1-ene
- C 2-ethylpent-2-ene
- D 3-methylpent-2-ene

(Total for Question 16 = 1 mark)

17 A compound contains 31.25% Ca, 18.75% C and 50.00% O.

Its empirical formula is

- A CaC₂O₄
- B Ca₂CO₃
- C Ca₂CO₂
- D CaCO₃

(Total for Question 17 = 1 mark)

18 Which reagent reacts with but-2-ene to form the compound with the formula shown?

- A Water
- B Sodium hydroxide
- C Hydrogen peroxide
- D Acidified potassium manganate(VII)

(Total for Question 18 = 1 mark)
A sample of zinc has the relative atomic mass 65.44. The sample contains four isotopes. The abundance of three of these isotopes is shown.

<table>
<thead>
<tr>
<th>Relative isotopic mass</th>
<th>64</th>
<th>66</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance (%)</td>
<td>49.00</td>
<td>27.90</td>
<td>4.50</td>
</tr>
</tbody>
</table>

(a) (i) Use these data to calculate the relative isotopic mass of the fourth isotope.

Show your working, and give your answer to an appropriate number of significant figures.

(ii) State and explain what difference, if any, you would expect between the chemical properties of the lightest and heaviest isotopes of zinc.
(b) Isotopic masses are determined using a mass spectrometer. The sample under investigation is first converted into gaseous ions.

(i) Ions then pass through slits in a series of electrically charged plates.

Give two reasons for this procedure.

(ii) State how ions of different mass are separated.

(iii) The ions eventually produce a current in the detector. Data from the detector are used to produce a mass spectrum.

State how the horizontal axis of a mass spectrum is labelled.
Give your answer in words, not symbols.

(c) Complete the electronic configuration of an atom of zinc using s p d notation.

1s\(^2\)
(d) Describe, with the aid of a diagram, the bonding in a sample of zinc. You should state the attractions which hold the particles together in the solid.

(Total for Question 19 = 12 marks)
20 (a) The second ionisation energies of some elements in Period 3 are shown on the grid.

(i) Mark on the grid, with a cross, the value you would expect for sulfur.

(ii) Write an equation, including state symbols, for the second ionisation of aluminium.
*(iii) Explain why the second ionisation energy of aluminium is greater than both the second ionisation energy of magnesium and the second ionisation energy of silicon.

(iv) Predict, with a reason, which element in Period 3 has the highest second ionisation energy.
(b) Magnesium and sulfur both react with chlorine to form chlorides with a formula XCl₂.

Magnesium chloride, MgCl₂, is ionic. Sulfur dichloride, SCl₂, consists of covalently bonded molecules.

(i) Describe how the electrical conductivity of these two compounds differs.

..
..
..
..

(ii) Draw a dot and cross diagram for sulfur dichloride.

Use crosses (×) for electrons in sulfur and dots (●) for electrons in chlorine. Only show outer shell electrons.

..
..

(iii) Sketch an electron density map of sulfur dichloride.

..
..
..
..

(iv) State how the electron density map of magnesium chloride differs from that of sulfur dichloride.

..
..
..
..
(c) The Born-Haber cycle can be used to determine the lattice energy of magnesium chloride. The table below shows the enthalpy changes that are needed.

<table>
<thead>
<tr>
<th>Energy change</th>
<th>(\Delta H)/ kJ mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpy change of atomisation of magnesium</td>
<td>+147.7</td>
</tr>
<tr>
<td>First ionisation energy of magnesium</td>
<td>+738</td>
</tr>
<tr>
<td>Second ionisation energy of magnesium</td>
<td>+1451</td>
</tr>
<tr>
<td>Enthalpy change of atomisation of chlorine ((\frac{1}{2})Cl(_2))</td>
<td>+121.7</td>
</tr>
<tr>
<td>First electron affinity of chlorine</td>
<td>−348.8</td>
</tr>
<tr>
<td>Enthalpy change of formation of magnesium chloride</td>
<td>−641.3</td>
</tr>
</tbody>
</table>

(i) The diagram shows an incomplete Born-Haber cycle for the formation of magnesium chloride from magnesium and chlorine. Complete the diagram by writing the **formulae** of the correct species, including state symbols, on the five empty horizontal lines.

\[
\text{Mg}^{2+}(g) + 2\text{Cl}^-(g) \\
\text{Mg(s) + Cl}_2(g) \\
\]
(ii) Calculate the lattice energy of magnesium chloride in kJ mol\(^{-1}\). (2)

>Total for Question 20 = 19 marks
The compound hydrazine, \(\text{N}_2\text{H}_4 \), is a liquid which is used as a rocket fuel.

\[
\begin{array}{cc}
\text{H} & \text{H} \\
\text{N} & \text{N} \\
\text{H} & \text{H}
\end{array}
\]

It reacts with oxygen to form nitrogen and water.

(a) Complete the Hess cycle and, using data in the table, calculate the enthalpy change for the oxidation of hydrazine, \(\Delta H_{\text{reaction}} \).

<table>
<thead>
<tr>
<th>Species</th>
<th>Standard enthalpy change of formation / kJ mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N}_2\text{H}_4(\text{l}))</td>
<td>+50.6</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}(\text{l}))</td>
<td>−285.8</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{N}_2\text{H}_4(\text{l}) & + \text{O}_2(\text{g}) \quad \Delta H_{\text{reaction}} \quad \text{N}_2(\text{g}) & + 2\text{H}_2\text{O}(\text{l}) \\
\end{align*}
\]
(b) Some bond enthalpies are given in the table.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond enthalpy / kJ mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>N≡N</td>
<td>945</td>
</tr>
<tr>
<td>O≡O</td>
<td>498</td>
</tr>
<tr>
<td>N=N</td>
<td>158</td>
</tr>
<tr>
<td>H─O</td>
<td>464</td>
</tr>
<tr>
<td>N─H</td>
<td>391</td>
</tr>
</tbody>
</table>

(i) Calculate the enthalpy change for the oxidation of hydrazine, using the bond enthalpy values in the table.

\[\text{N}_2\text{H}_4(\text{l}) + \text{O}_2(\text{g}) \rightarrow \text{N}_2(\text{g}) + 2\text{H}_2\text{O}(\text{l}) \]

(ii) Give two reasons why the enthalpy change calculated using bond enthalpies differs from \(\Delta H_{\text{reaction}} \) calculated from the Hess cycle.

(Total for Question 21 = 7 marks)
22 One component of petrol is decane, C\textsubscript{10}H\textsubscript{22}.

(a) Decane reacts with chlorine in the presence of ultraviolet light to form a mixture of products.

(i) Complete the equation for the initiation step, including appropriate curly arrows.

$$\text{Cl} \quad \text{Cl} \quad \rightarrow$$

(ii) Write equations, using molecular formulae, for two propagation steps.

(iii) Write equations, using molecular formulae, for two termination steps, other than the one in which chlorine forms.

(b) The structure of decane can be changed by the process called reforming.

Name the compound shown, which can be produced in this process.
(c) Write an equation, using molecular formulae, for the incomplete combustion reaction in which decane reacts to form carbon monoxide and one other product.

State symbols are not required. (1)

(d) Decane can be cracked to form a mixture of butane, and two different alkenes which have different molecular formulae.

(i) Write an equation for this reaction, using molecular formulae. State symbols are not required. (1)

*(ii) Explain why geometric isomerism can occur in alkenes and why alkenes produced by this cracking reaction may not have geometric isomers. (2)

(iii) Draw the structure of the trans, (E), isomer of an alkene produced by the cracking reaction in (d)(i). (1)

(Total for Question 22 = 12 marks)
23 This question is about alkenes.

(a) Describe in detail the structure of the C=C double bond in alkenes and hence explain why alkenes are more reactive than alkanes.

(b) Hydrogen bromide reacts with propene to form a mixture of 1-bromopropane and 2-bromopropane.

(i) Draw the mechanism for the formation of the **major** product in the reaction of propene with hydrogen bromide. You should show relevant dipoles and curly arrows.
(ii) State why the amounts of each product are **not** equal.

(c) A derivative of propene called allyl bromide, or 3-bromoprop-1-ene, is used to make polymers. The formula of allyl bromide is \(\text{CH}_2=\text{CHCH}_2\text{Br} \).

Write the equation for the polymerisation of allyl bromide, showing the structure of the polymer.
The Periodic Table of Elements

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>H</td>
<td>hydrogen</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Li lithium</td>
<td>Be beryllium</td>
</tr>
<tr>
<td>3</td>
<td>9.0</td>
</tr>
<tr>
<td>4</td>
<td>6.9</td>
</tr>
<tr>
<td>Na sodium</td>
<td>Mg magnesium</td>
</tr>
<tr>
<td>11</td>
<td>23.0</td>
</tr>
<tr>
<td>12</td>
<td>24.3</td>
</tr>
<tr>
<td>K potassium</td>
<td>Ca calcium</td>
</tr>
<tr>
<td>19</td>
<td>39.1</td>
</tr>
<tr>
<td>Sc scandium</td>
<td>Ti titanium</td>
</tr>
<tr>
<td>21</td>
<td>47.9</td>
</tr>
<tr>
<td>V vanadium</td>
<td>Cr chromium</td>
</tr>
<tr>
<td>23</td>
<td>50.9</td>
</tr>
<tr>
<td>Mn manganese</td>
<td>Fe iron</td>
</tr>
<tr>
<td>25</td>
<td>54.9</td>
</tr>
<tr>
<td>Co cobalt</td>
<td>Ni nickel</td>
</tr>
<tr>
<td>27</td>
<td>58.9</td>
</tr>
<tr>
<td>Cu copper</td>
<td>Zn zinc</td>
</tr>
<tr>
<td>29</td>
<td>63.5</td>
</tr>
<tr>
<td>Ga gallium</td>
<td>Ge germanium</td>
</tr>
<tr>
<td>31</td>
<td>69.7</td>
</tr>
<tr>
<td>As arsenic</td>
<td>Se selenium</td>
</tr>
<tr>
<td>33</td>
<td>72.6</td>
</tr>
<tr>
<td>Br bromine</td>
<td>Kr krypton</td>
</tr>
<tr>
<td>35</td>
<td>79.9</td>
</tr>
<tr>
<td>Rb rubidium</td>
<td>Sr strontium</td>
</tr>
<tr>
<td>37</td>
<td>85.5</td>
</tr>
<tr>
<td>Y yttrium</td>
<td>Zr zirconium</td>
</tr>
<tr>
<td>39</td>
<td>91.2</td>
</tr>
<tr>
<td>Nb niobium</td>
<td>Mo molybdenum</td>
</tr>
<tr>
<td>41</td>
<td>92.9</td>
</tr>
<tr>
<td>Tc technetium</td>
<td>Ru ruthenium</td>
</tr>
<tr>
<td>43</td>
<td>95.9</td>
</tr>
<tr>
<td>Rh rhodium</td>
<td>Pd palladium</td>
</tr>
<tr>
<td>45</td>
<td>101.1</td>
</tr>
<tr>
<td>Ag silver</td>
<td>Cd cadmium</td>
</tr>
<tr>
<td>47</td>
<td>107.9</td>
</tr>
<tr>
<td>In indium</td>
<td>Sn tin</td>
</tr>
<tr>
<td>49</td>
<td>112.4</td>
</tr>
<tr>
<td>Sb antimony</td>
<td>Te tellurium</td>
</tr>
<tr>
<td>51</td>
<td>114.8</td>
</tr>
<tr>
<td>I iodine</td>
<td>Xe xenon</td>
</tr>
<tr>
<td>53</td>
<td>131.3</td>
</tr>
<tr>
<td>Cs caesium</td>
<td>Ba barium</td>
</tr>
<tr>
<td>55</td>
<td>132.9</td>
</tr>
<tr>
<td>La lanthanum</td>
<td>Ce cerium</td>
</tr>
<tr>
<td>57</td>
<td>178.5</td>
</tr>
<tr>
<td>Pr praseodymium</td>
<td>Nd neodymium</td>
</tr>
<tr>
<td>59</td>
<td>180.9</td>
</tr>
<tr>
<td>Sm samarium</td>
<td>Eu europium</td>
</tr>
<tr>
<td>61</td>
<td>183.8</td>
</tr>
<tr>
<td>Gd gadolium</td>
<td>Tb terbium</td>
</tr>
<tr>
<td>63</td>
<td>186.2</td>
</tr>
<tr>
<td>Dy dysprosium</td>
<td>Ho holmium</td>
</tr>
<tr>
<td>65</td>
<td>190.2</td>
</tr>
<tr>
<td>Er erbium</td>
<td>Tm thulium</td>
</tr>
<tr>
<td>67</td>
<td>192.2</td>
</tr>
<tr>
<td>Yb ytterbium</td>
<td>Lu lutetium</td>
</tr>
<tr>
<td>69</td>
<td>195.1</td>
</tr>
<tr>
<td>Ac actinium</td>
<td>Ra radium</td>
</tr>
<tr>
<td>89</td>
<td>197.0</td>
</tr>
<tr>
<td>Rf rutherfordium</td>
<td>Db dubnium</td>
</tr>
<tr>
<td>104</td>
<td>200.6</td>
</tr>
<tr>
<td>Sg seaborgium</td>
<td>Hs hassium</td>
</tr>
<tr>
<td>106</td>
<td>204.4</td>
</tr>
<tr>
<td>Mt meitnerium</td>
<td>Mt moscovium</td>
</tr>
<tr>
<td>108</td>
<td>207.2</td>
</tr>
<tr>
<td>Ds darmstadtium</td>
<td>Rg nihonium</td>
</tr>
<tr>
<td>110</td>
<td>209.0</td>
</tr>
<tr>
<td>Fr francium</td>
<td>Rn radon</td>
</tr>
<tr>
<td>87</td>
<td>210.0</td>
</tr>
<tr>
<td>[223]</td>
<td>222.0</td>
</tr>
</tbody>
</table>

Elements with atomic numbers 112-116 have been reported but not fully authenticated.

* Lanthanide series
* Actinide series