Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCSE
In Mathematics B (2MB01)
Higher (Calculator) Unit 3
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 5MB3H_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016
NOTES ON MARKING PRINCIPLES

1. All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2. Mark schemes should be applied positively.

3. All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Note that in some cases a correct answer alone will not score marks unless supported by working; these situations are made clear in the mark scheme. Examiners should be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.

4. Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5. Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

6. Mark schemes will award marks for the quality of written communication (QWC).
 The strands are as follows:

 i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 Comprehension and meaning is clear by using correct notation and labelling conventions.

 ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.

 iii) organise information clearly and coherently, using specialist vocabulary when appropriate.
 The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.
7 With working
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Partial answers shown (usually indicated in the ms by brackets) can be awarded the method mark associated with it (implied).
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks; transcription errors may also gain some credit. Send any such responses to review for the Team Leader to consider.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

10 Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
11 **Linear equations**
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

12 **Parts of questions**
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 **Range of answers**
Unless otherwise stated, when an answer is given as a range (e.g 3.5 – 4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

<table>
<thead>
<tr>
<th>Guidance on the use of codes within this mark scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 – method mark</td>
</tr>
<tr>
<td>A1 – accuracy mark</td>
</tr>
<tr>
<td>B1 – Working mark</td>
</tr>
<tr>
<td>C1 – communication mark</td>
</tr>
<tr>
<td>QWC – quality of written communication</td>
</tr>
<tr>
<td>oe – or equivalent</td>
</tr>
<tr>
<td>cao – correct answer only</td>
</tr>
<tr>
<td>ft – follow through</td>
</tr>
<tr>
<td>sc – special case</td>
</tr>
<tr>
<td>dep – dependent (on a previous mark or conclusion)</td>
</tr>
<tr>
<td>indep – independent</td>
</tr>
<tr>
<td>isw – ignore subsequent working</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1*</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>----------</td>
</tr>
</tbody>
</table>
| 4 | | 22.5 | 4 | M1 for $4(x - 8) = 2x + 13$
M1 for expansion of bracket or division of all terms by 4,
eg $4x - 32 = 2x + 13$, or $x - 8 = \frac{2x}{4} + \frac{13}{4}$
M1 for isolating x and number terms eg $2x = 45$, $\frac{x}{2} = \frac{45}{4}$
A1 for $\frac{45}{2}$ or 22.5
OR
M1 for $(180 - 64) \div 2$ (= 58)
M1 for $4(x - 8) =$ “58” or $2x + 13 =$ “58” or “58” − 13 (= 45)
M1 for isolating x and number terms eg $4x = 90$, $2x = 45$ or “45” ÷ 2
A1 for $\frac{45}{2}$ or 22.5
OR
M1 for $64 + 4(x - 8) + 2x + 13$
M1 for $64 + 4(x - 8) + 2x + 13 = 180$
M1 for isolating x and number terms eg $6x = 135$
A1 for $\frac{45}{2}$ or 22.5 |
| 5 | Correct region shaded | 3 | M1 for a circle centre M or N (accept arc of sufficient length to define the region)
M1 for circle centre M radius 5 cm and circle centre N radius 3 cm (accept arc of sufficient length to define the region)
A1 for correct region shaded |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| *6 | Conclusion (supported) | 4 | M1 for $\pi \times 120^2 (= 45216 - 45249)$
M1 for $\pi \times 120^2 \div 1800$
A1 for 25 – 25.2
C1 ft (dep on M2) for appropriate conclusion from their figures
OR
M1 for $\pi \times 120^2 (= 45216 - 45249)$
M1 for 20 \times 1800
A1 for 36 000 and 45 216 – 45 249
C1 ft (dep on M2) for appropriate conclusion from their figures
OR
M1 for $\pi \times 120^2 (= 45216 - 45249)$
M1 for $\pi \times 120^2 \div 20$
A1 for 2260 – 2263
C1 ft (dep on M2) for appropriate conclusion from their figures
OR
M1 for 1800 \times 20
M1 for 36 000 \div π (=11 457 – 11 465)
A1 for 107(.0…)
C1 ft (dep on M2) for appropriate conclusion from their figures | |
| 7 | 161.50 | 5 | M2 for a correct method to decrease 6720 by 20%, eg 6720 \times 0.8 (= 5376)
or 6720 \times 0.2 (= 1344 and 6720 – 1344 (= 5376))
(M1 for a correct method to find 20% of 6720 eg 6720 \times 0.2 or $\frac{20}{100} \times 6720 (= 1344))
M1 for subtracting 1500 (= 3876) after a percentage calculation
M1 “3876” \div 24 after the subtraction of 1500
A1 for 161.5(0) | |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>42</td>
<td>3.7</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>45.291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>48.768</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>52.437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>56.304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>60.375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>64.656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>69.153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>73.872</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>78.819</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.71</td>
<td>69.61481</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.72</td>
<td>70.078848</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.73</td>
<td>70.545117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.74</td>
<td>71.013624</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.75</td>
<td>71.484375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>618</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 10 | (a) | 15.2 | 3 | M1 for $12.7^2 + 8.3^2$ or $161.29 + 68.89$ or 230.18
M1 for $\sqrt{(12.7^2 + 8.3^2)}$ or $\sqrt{161.29 + 68.89}$ or $\sqrt{230.18}$
A1 for 15.2 or 15.17(168…) |
| | (b) | 16.1 | 3 | M1 for $\sin 40^\circ = \frac{DE}{25}$ oe or $\frac{DE}{\sin 40^\circ} = \frac{25}{\sin 90^\circ}$ oe
M1 for $25 \sin 40^\circ$
A1 for 16.1 or 16.06(969…) |
| 11 | (a) | 4.081 | 2 | M1 for $8.875 or \frac{71}{8}$ or 2.979…or 4.08
A1 for 4.081 or 4.0809(5…).… |
| | (b) | 4×10^{-3} | 2 | M1 for 4×10^3, $n \neq -3$ or $a \times 10^{-3}$, $a \neq 4$ or 0.004 or 0.4×10^{-2} or $1/250$
A1 cao |
| 12 | | $x < 2$ | 2 | M1 for an attempt to isolate x and number terms or multiply all terms by 2,
or for $\frac{3}{2} x < 3$ or $-\frac{3}{2} x < -3$ or $x = 2$
A1 cao |
| 13 | (a) | 0, 6, 4, −6 | 2 | B2 for all values correct
(B1 for any one value correct) |
| | (b) | Graph drawn | 2 | M1 ft (provided B1 in (a) for at least 6 points plotted correctly from their table
A1 cao for correct curve drawn from (–4, –6) to (3, –6) |
| | (c) | 1.5 to 1.6 and
−2.5 to −2.6 | 2 | M1 for correct use $y = 2$ (may be implied by one correct estimate) or correct use of formula.
A1 for 1.5 to 1.6 and −2.5 to −2.6 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 14* | Sher Yas | Old 19300 12560 New 20265 13502 Inc 965 942 | Correct comparison (supported) | 3 | M1 for a correct method to calculate the population at the beginning of the 10 year period for at least one place.
\[\frac{20265}{1.05} = 19300 \text{ oe or } \frac{13502}{1.075} = 12560 \text{ oe} \]
A1 for 965 (Sherbury) and 942 (Yaston)
C1 (dep on M1) ft for statement comparing increases leading to conclusion based on two comparable amounts eg increase in Sherbury is greater than increase in Yaston |
| 15 | 20x + 10y = 35
6x − 10y = −48
x = \frac{-1}{2}
y = \frac{9}{2}
OR
12x + 6y = 21
12x − 20y = −96
26y = 117
y = \frac{9}{2}
x = \frac{-1}{2} | \frac{-1}{2} \cdot \frac{9}{2} | 4 | M1 for a correct process to eliminate either variable (condone one arithmetic error)
A1 cao for either x or y
M1 (dep on M1) for correct substitution of found value into one of the equations or appropriate method after starting again (condone one arithmetic error)
A1 cao
OR
M1 for full method to rearrange and substitute to eliminate either variable (condone one arithmetic error)
A1 cao for either x or y
M1 (dep on M1) for correct substitution of found value into one of the equations or appropriate method after starting again (condone one arithmetic error)
A1 cao
\textbf{NB} Trial and improvement methods score 0 marks unless both x and y are correct |
| 16 | | 226 | 2 | M1 for \(\text{angle } ABC = 180 - 67 (= 113) \)
A1 cao
OR
M1 for obtuse angle \(\text{angle } AOC = 2 \times 67 (= 134) \)
A1 cao |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>$-2.82, 19.82$</td>
<td>3</td>
<td></td>
<td>$M1$ for $\frac{-17 \pm \sqrt{(-17)^2 - 4 \times 1 \times -56}}{2 \times 1}$ (condone one sign error) or $\left(x - \frac{17}{2}\right)^2$ oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$M1$ for $\frac{17 \pm \sqrt{513}}{2}$ or for method leading to $\frac{17}{2} \pm \sqrt{\frac{513}{4}}$ oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$A1$ for answers in the range 19.82 to 19.825; -2.82 to -2.825</td>
</tr>
</tbody>
</table>
| 18 | 21.2 | 4 | | $M1$ for correct use of sine rule to find AB or BC,
<p>| | | | | $\text{eg } \frac{6}{\sin 25} = \frac{AB}{\sin 120}$ or $\frac{6}{\sin 25} = \frac{BC}{\sin(180 - 120 - 25)}$ |
| | | | | $M1$ for $(AB =) \frac{6}{\sin 25} \times \sin 120 = 12.2(951\ldots)$ or $(BC =) \frac{6}{\sin 25} \times \sin 35 = 8.1(431\ldots)$ |
| | | | | $M1(\text{dep M2})$ for method to find area, eg $0.5 \times 6 \times "AB" \sin 35$ or $0.5 \times 6 \times "BC" \sin 120$ |
| | | | | $A1$ for answer in the range 21.1 – 21.2 |
| | | | | OR (with perpendicular from A meeting BC extended at a point X) |
| | | | | $M1$ for method to find AX |
| | | | | $M1$ for method to find BX |
| | | | | $M1(\text{dep M2})$ for $0.5 \times "AX" \times "BC"$ |
| | | | | $A1$ for answer in the range 21.1 – 21.2 |
| *19 | 0.38 | 5 | | $\text{B1 for } 10.75 \text{ or } 10.85 \text{ or } 10.84999\ldots$ |
| | | | | $\text{B1 for } 75.055 \text{ or } 75.065 \text{ or } 75.064999\ldots$ |
| | | | | $M1$ for $\frac{10.85}{75.055}$ as UB OR $\frac{10.75}{75.065}$ as LB |
| | | | | $A1$ (dep on all previous marks) for both 0.3802… and 0.3784 must clearly come from working with correct values |
| | | | | $C1$ for 0.38 from 0.3784… and 0.3802 … and “both LB and UB round to 0.38” |
| | | | | $\text{NB An answer of } 038(932\ldots) \text{ without working scores no marks}$ |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 20 | | 7.35 | 3 | M1 for $y \propto \frac{1}{\sqrt{x}}$ or $y = \frac{k}{\sqrt{x}}$ or $9 = \frac{k}{\sqrt{4}}$
| | | | | M1 for $k = 9\sqrt{4} (=18)$
| | | | | A1 for 7.35 or 7.348… |
| #21 | $\frac{2}{3} (7a + 3b)$ and correct conclusion | 4 | | M1 for correct vector for \overrightarrow{OY}, or \overrightarrow{AP}
| | | | | $\overrightarrow{OY} = \overrightarrow{OA} + \overrightarrow{AY}$, or $\overrightarrow{OY} = \overrightarrow{OA} + \frac{2}{3}\overrightarrow{AP}$ may include terms in a and b, eg. $6a + \overrightarrow{AY}$, $4b + 4a - b + \overrightarrow{PY}$ or $\overrightarrow{AP} = \overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{BP}$ or $-6a + 4b + 4a - b$ or $-2a + 3b$
| | | | | M1 for $(\overrightarrow{AY}) = \frac{2}{3} \overrightarrow{AP}$ or $\frac{3}{2}(-6a + 4b + 4a - b)$ or $\frac{3}{2}(-2a + 3b)$
| | | | | or $(\overrightarrow{PY}) = \frac{1}{3} \overrightarrow{PA}$ or $\frac{1}{3}(-4a + b - 4b + 6a)$ or $\frac{1}{3}(2a - 3b)$
| | | | | M1 for correct expression for \overrightarrow{OY} in terms of a and b, eg $\frac{14}{3} a + 2b$
| | | | | C1 for $\frac{2}{3} (7a + 3b)$ and “\overrightarrow{OY} is parallel to the vector $7a + 3b$” oe |
Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: ±5°
Measurements of length: ±5 mm

<table>
<thead>
<tr>
<th>Question</th>
<th>Modification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2 (a)</td>
<td>Grid enlarged. Shading changed to dotty shading. Labels added to shapes. Image labelled shape A. Rotation given and labelled shape B. Question changed to ‘Describe fully the single transformation which maps shape A to shape B. One row top and bottom, one column left and right has been removed. Three answer lines given.</td>
<td>2 cao (B1 for correct orientation in third quadrant or correct quarter turn)</td>
</tr>
<tr>
<td>Q2 (b)</td>
<td>Grid enlarged. Shading changed to dotty shading. Labels added next to the triangles ‘triangle P’ and ‘triangle Q’. One column removed from the left.</td>
<td>B1 for enlargement, B1 for scale factor 4, B1 for centre (0, 1)</td>
</tr>
<tr>
<td>Question</td>
<td>Modification</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| Q4 | Diagram enlarged. MLP only – x changed to y. Braille only – measurements given in the text. | M1 for $4(x - 8) = 2x + 13$
M1 for expansion of bracket or division of all terms by 4, eg $4x - 32 = 2x + 13$, $x - 8 = 2x/4 + 13/4$
M1 for isolating x and number terms eg $2x = 45$, $x/2 = 45/4$
A1 for $45/2$ or 22.5
OR
M1 for $(180 - 64) ÷ 2$ (= 58)
M1 for $4(x - 8) = 58$ or $2x + 13 = 58$
M1 for isolating x and number terms eg $4x = 90$, $2x = 45$
A1 for $45/2$ or 22.5
OR
M1 for $64 + 4(x - 8) + 2x + 13$
M1 for $64 + 4(x - 8) + 2x + 13 = 180$
M1 for isolating x and number terms eg $6x = 135$
A1 for $45/2$ or 22.5 |
| Q5 | Diagram kept the same size as original. Scale moved above the diagram and also put in the question paper. | B1 for circle centre M radius 5 cm
B1 for circle centre N radius 3 cm
B1 for correct region shaded |
<table>
<thead>
<tr>
<th>Question</th>
<th>Modification</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Q6 | Diagram enlarged. Cross changed to a filled in circle. Arrow heads removed. | M1 for $\pi \times 120^2 \ (= 45238\ldots)$
M1 for “$\pi \times 120^2$ ÷ 1800”
A1 for 25.0 – 25.2
C1 for “surface is large enough as 25 > 20” oe
OR
M1 for $\pi \times 120^2 \ (= 45238\ldots)$
M1 for 20×1800
A1 for 36000
C1 for “surface is large enough as 36000 < 45238….” oe
OR
M1 for $\pi \times r^2 = 1800 \times 20$
M1 for $36000 \div \pi \ (=11459\ldots)$
A1 for 107.0…
C1 for “surface is large enough as 107…< 120” oe |
| Q9 | Model provided for all candidates. Diagram enlarged and provided for MLP. | M1 for a method to find an area which is part of the cross section
M1 (dep) for a complete method to find the total area of the cross section
M1 (dep M2) for a complete method for the volume of the prism
A1 cao
OR
M1 for a method to find the volume of cuboid, $8 \times 8 \times 12$
M1 for a method to find the volume of the triangular prism
M1 (depM2) for a complete method for the volume of the prism
A1 cao |
<table>
<thead>
<tr>
<th>Question</th>
<th>Modification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q10</td>
<td>(a) Diagram enlarged. Braille only: measurements given in the text.</td>
<td>M1 for (12.7^2 + 8.3^2) or (161.29 + 68.89) or (230.18) M1 for (\sqrt{161.29 + 68.89}) or (\sqrt{230.18}) A1 for 15.2 or 15.17(168...)</td>
</tr>
<tr>
<td>Q10</td>
<td>(b) Diagram enlarged. Braille only – measurements given in the text.</td>
<td>M1 for (\sin 40^\circ = \frac{DE}{25}) oe M1 for (25 \sin 40^\circ) A1 for 16.1 or 16.06(969...)</td>
</tr>
<tr>
<td>Q13</td>
<td>(a) Wording added ‘There are four spaces to fill.’</td>
<td>B2 for all values correct (B1 for any one value correct)</td>
</tr>
<tr>
<td>Q13</td>
<td>(b) Grid enlarged.</td>
<td>M1 ft for at least 6 points plotted correctly from their table A1 cao for correct curve drawn from ((-4, -6)) to ((3, -6))</td>
</tr>
<tr>
<td>Q16</td>
<td>Diagram enlarged. Dot added at centre.</td>
<td>M1 for (\text{angle ABC} = 180 - 67) (= 113) A1 cao OR M1 for (\text{obtuse angle AOC} = 2 \times 67) (= 134) A1 cao</td>
</tr>
<tr>
<td>Question</td>
<td>Modification</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| Q18 | Diagram enlarged. | M1 for correct use of sine rule to find AB or BC,
$\frac{6}{\sin 25^\circ} = \frac{AB}{\sin 120^\circ}$
M1 for $(AB =) \frac{6}{\sin 25^\circ} \times \sin 120^\circ$ or $(BC =) \frac{6}{\sin 25^\circ} \times \sin 35^\circ$
M1(dep M2) for method to find area, eg $0.5 \times 6 \times AB \sin 35^\circ$ or $0.5 \times 6 \times BC \sin 120^\circ$
A1 for answer in the range 21.1 – 21.2
OR (with perpendicular from A meeting BC extended at a point X)
M1 for method to find AX
M1 for method to find BX
M1(dep M2) for $0.5 \times \text{“}AX\text{“} \times \text{“}BC\text{“}$
A1 for answer in the range 21.1 – 21.2 |
| Q21 | Diagram enlarged. | M1 for correct vector for \overrightarrow{OY},
$\overrightarrow{(OY)} = \overrightarrow{OA} + \overrightarrow{AY}$, may include terms in \overrightarrow{a} and \overrightarrow{b}, eg $6\overrightarrow{a} + \overrightarrow{AY}$, $4\overrightarrow{b} + 4\overrightarrow{a} - \overrightarrow{b} + \overrightarrow{PY}$
M1 for $(\overrightarrow{AY} =) \frac{2}{3} \overrightarrow{AP}$ or $(\overrightarrow{PY} =) \frac{1}{3} \overrightarrow{PA}$
M1 for correct expression for \overrightarrow{OY} in terms of \overrightarrow{a} and \overrightarrow{b}, eg $\frac{14}{3}\overrightarrow{a} + 2\overrightarrow{b}$
C1 for $\frac{2}{3} (7\overrightarrow{a} + 3\overrightarrow{b})$ and “\overrightarrow{OY} is parallel to the vector $7\overrightarrow{a} + 3\overrightarrow{b}$” oe |