| A10.1 Gradients of graphs                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| O Before you start                                                                                                                                                                                               | 🔗 Why do this?                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| You should be able to: <ul> <li>find the gradient of the line joining two points.</li> </ul>                                                                                                                     | Aircraft engineers need to know about<br>accelerations so that aircraft can be designed<br>properly.                                                                                                                                                                     |  |  |  |  |  |  |
| Objectives                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| <ul> <li>You can find an estimate for the gradient of a curve at any point by drawing a tangent to the curve.</li> <li>You can interpret the gradient of a curve as the rate of change of a quantity.</li> </ul> | <ol> <li>What is the gradient of the line segments which join these points?         <ul> <li>A (2, 3) and B (4, 12)</li> <li>C (4, 10) and D (6, 6)</li> <li>E (-3, 3) and F (-1, 6)?</li> </ul> </li> <li>What does the phrase 'a tangent to a circle' mean?</li> </ol> |  |  |  |  |  |  |

## **Ney Points**

- The tangent at a point P on a graph is the straight line which just touches the graph at the point P.
- The gradient at a point on a graph is the gradient of the tangent to the graph at that point.
- The gradient of the tangent can be found in the same way as the gradient of any straight line.
- For a distance-time graph, the gradient is equal to the speed.
- For a speed-time graph or velocity-time graph, the gradient is equal to the acceleration.
- The acceleration of an object is equal to its rate of change of velocity.



### Chapter 10 Gradients of graphs





#### Chapter 10 Gradients of graphs



Draw the curve with equation  $y = x^2$  for values of x from -3 to 3. Calculate an estimate of the gradient of the curve at these points:

3 a Copy and complete the table of values for the curve with equation  $y = x^2 + 4x$ for values of x from 0 to 5.

| x | 0 | 1 | 2 | 3 | 4 | 5  |
|---|---|---|---|---|---|----|
| y |   | 5 |   |   |   | 45 |

**b** Draw the graph.

- **c** Calculate an estimate for the gradient of the graph at x = 2.
- 4

A

A

a Copy and complete the table of values for the curve with equation  $y = 8x - x^2$ .

| x | 0 | 1 | 2 | 3 | 4 | 5  | 6 |
|---|---|---|---|---|---|----|---|
| y |   | 7 |   |   |   | 15 |   |

**b** Draw the graph.

- c Calculate an estimate for the gradient of the graph:
  - i at x = 2 ii at x = 4
- 5

4

a Copy and complete the table of values for the curve with equation  $y = x^2 - 4x - 5$ .

| x | -3 | -2 | -1 | 0 | 1 | 2  | 3 |
|---|----|----|----|---|---|----|---|
| y |    | 7  |    |   |   | -9 |   |

**b** Draw the graph.

- **c** i Calculate an estimate for the gradient of the graph at x = 1.
  - ii Calculate an estimate for the gradient of the graph at x = -2.
- 6

a Copy and complete the table of values for the curve with equation  $y = \frac{24}{x}$ 

| x | 1  | 2 | 3 | 4 | 5   | 6 |
|---|----|---|---|---|-----|---|
| y | 24 |   |   |   | 4.8 |   |

- **b** Draw the graph.
- **c** Calculate an estimate for the gradient of the graph at x = 4.
- 7

The graph shows the water level in a tank.



- a Work out an estimate for the rate at which the water is rising when t = 15
- **b** Work out the average rate of rise of the water level between t = 10 and t = 30

8 The graph shows the distance, y m, that a car has travelled during t seconds.



- a Calculate an estimate of the speed of the car at t = 20.
- **b** Calculate the average speed of the car between t = 10 and t = 50.

9

10

A

The graph shows the velocity of a train for the first two minutes after it had left a station.



Calculate an estimate of the acceleration of the train after:

a 20 seconds b 80 seconds.

For the 3rd minute the train reduces speed at a constant rate until it comes to rest.

Draw the velocity-time graph for the first 3 minutes of the train's journey and find the deceleration of the train.

The graph shows the distance that a car has travelled in its first minute measured from a point X on a road.

a Calculate an estimate of the speed of the car at t = 25.

A van travelling in the same direction along the same road has the distance d metres, it travels in t seconds from the point X, given by the equation d = 5t.

- b How far ahead of the van was the car initially?
- c Describe fully the motion of the van.
- d Use the graph to find an estimate of the value of *t* when the van catches up with the car.



A





Calculate an estimate of the rate of change of the population at the start of 1980.



- The gradient of a curve at a point is the same as the gradient of the tangent to the curve at that point.
- The gradient of a distance-time graph at a time *t* is equal to the velocity at time *t*.
- The gradient of a velocity-time graph at a time t is equal to the acceleration at time t.

# **Answers**

### Chapter 10

### A10.1 Get Ready answers

**1 a** 4.5

- .5 **b** −2
- 2 A tangent to a circle is a straight line which touches the circle. (More technically, it intersects the circle at two coincident points)

**c** 1.5

### Exercise 10A



