A5.1 Exponential growth and decay

Before you start

You need to be able to:

- work out scale factors for percentage increase and decrease.
- ullet draw a graph given y in terms of x.

Why do this?

In science, population growth is often an exponential function of time. The size of an investment in a bank account will grow exponentially if the interest rate remains constant. Radioactive decay is an example of exponential decay.

Objectives

- You can understand the meaning of exponential growth and decay.
- You can use multipliers to explore exponential growth and decay.
- You can use exponential growth in real life problems.

Get Ready

Work out:

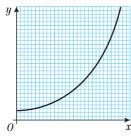
1 5⁴ **2** 2⁷

3 0.8²

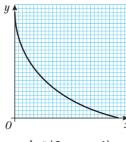
4 56⁰

Ney Points

- Exponential growth occurs when a function keeps increasing by the same scale factor. For example, the size of a population of bacteria may double every hour, the amount invested in a bank account will increase each year by the same scale factor as long as the interest rate remains constant.
- Exponential decay occurs when a function keeps decreasing by the same scale factor. For example, the mass of a radioactive element may halve every hour.
- ullet All exponential growth and decay functions can be represented by the equation $y=ka^x$
- ullet For exponential growth, a>1
- ullet For exponential decay, 0 < a < 1
- ullet The value of a, called the multiplier, is the scale factor by which the function grows or decays.
- ullet y represents the size of the population or amount at time x
- \bullet k represents the initial value of y



$$y=ka^x\,(a>0)$$



$$y = ka^x (0 < a < 1)$$

Example 1

A scientist is studying a population of flies.

The size of the population, P, after t days is given by the equation $P = 60 \times 2^t$.

- a Work out the size of the population of flies at the beginning of the study.
- b How many flies will there be after 10 days?
- c Draw a graph to show the size of the population for the first 5 days of the study.
- d What happens to the size of the population every day?

a
$$P = 60 \times 2^{\circ}$$

= 60

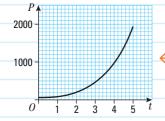
At the beginning of the study $t={\it O}$ so substitute this into the equation.

b
$$P = 60 \times 2^{10}$$
 = 61440

Substitute t = 10 into the equation.

С	t	0	1	2	3	4	5
	P	60	120	240	480	960	1920

Work out the size of the population for the first 5 days. Use a table to organise your results.



Plot your results on a graph.

d $P = 60 \times 2^t$

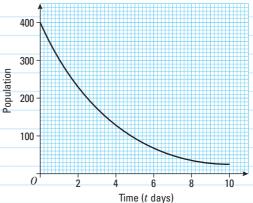
The multiplier is 2.

Compare the equation with $y = ka^x$

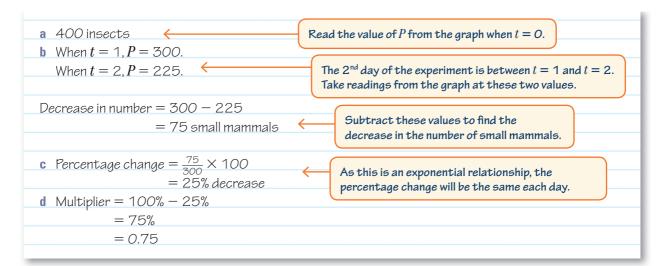
The population doubles every day.

🤻 Example 2

A scientist recorded the size of a population of small mammals for a number of days. The mammals are suffering from a disease and so the population is decreasing exponentially. The graph shows the size of the population t days after the start of the experiment.

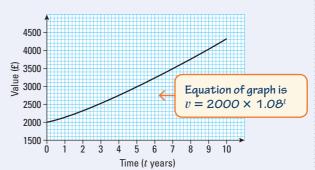


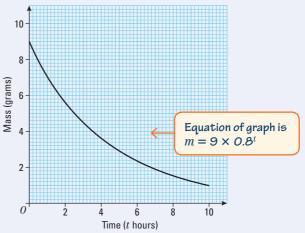
- a How many small mammals were present at the beginning of the experiment?
- b Work out the decrease in the number of small mammals during the 2nd day of the experiment.
- c Work out the percentage change in the number of small mammals each day.
- d Work out the multiplier.



Exercise 5A

- The graph shows the value, v, of an investment t years after the original amount was invested. The value of the investment increases exponentially.
 - a What was the original amount invested?
 - b How much did the investment grow by in the 4th year?
 - c i Work out the multiplier.
 - ii Work out the interest rate paid.
- The mass, *m* grams, of a radioactive substance decreases exponentially as shown in this graph.
 - a Work out the original mass of the substance.
 - **b** Work out the mass of the substance after 6 hours.
 - i Work out the multiplier.
 ii Work out the percentage rate of decrease.





- The value of a car, £C, t years after the car was bought is given by the equation: $C = 30\,000 \times 0.7^t$
 - a Work out the original price paid for the car.
 - **b** Draw a graph to show the value of the car for the first five years after the car was bought.
 - c By what percentage does the price of the car decrease every year?

The values in the table show the size of a population that is known to be increasing exponentially.

	Year	2005	2006	2007	2008	2009
	Size of population	43 600	48 832	54 692	61 255	68 605

- a Work out the multiplier.
- **b** Work out the likely size of the population in 2015.

Ney Points

• An alternative form of the equation $y = ka^x$ is: $A = P\left(\frac{100 + r}{100}\right)^n$

where: P is the original population (or amount)

n is the number of years (or hours etc)

r is the percentage by which the population is increasing (or decreasing)

A is the population (or amount) after n years.

Example 3

An initial investment of £P grows exponentially at a rate of r% per year.

The size of the investment, A, after n years is given by:

$$A = P\left(\frac{100 + r}{100}\right)^n$$

- a An investment is worth £11 576.25 after 3 years. Given that the interest rate was 5% per annum, work out the initial value of this investment.
- **b** Harry invests £2000, after 9 years the value of his investment is £2726. Work out the annual interest rate. Give your answer correct to two significant figures.

 $11576.25 = P \times 1.05^3$ Work out the sum in the brackets.

$$P = \frac{11576.25}{1.05^3}$$
 Rearrange the equation.
= £10000

b $2726 = 2000 \left(\frac{100 + r}{100}\right)^9$ Substitute the information into the equation.

$$\sqrt[9]{\frac{2726}{2000}} = \frac{100 + r}{100}$$
 Rearrange the equation.

$$100 \times \sqrt[9]{\frac{2726}{2000}} - 100 = r$$

r = 3.5%

Example 4

The population of an island is increasing exponentially. In 2 years the population increased from 6900 to 8400. Assuming that the population continues to increase at the same rate, what is the population of the island likely to be 5 years after the population was 6900?

Exercise 5B

An initial population, P, grows exponentially at a rate of r% per year.

The size of the population, A, after n years is given by:

$$A = P\left(\frac{100 + r}{100}\right)^n$$

- a Given that a population is initially 4000 and is growing exponentially at a rate of 7%, find the size of the population after 10 years.
- **b** Another population grows exponentially from 16 500 to 19 000 in 3 years. Work out the percentage rate of growth.
- The value of a machine in a factory decreases exponentially from its initial value, $\pounds P$, at a rate of r% per year. The value of the machine, A, after n years is given by:

$$A = P \left(\frac{100 - r}{100} \right)^n$$

- a Given that a machine cost £180 000 initially and its value is decreasing by 14% per annum, find the value of the machine after 10 years.
- **b** Another machine is initially worth £78 000; its value has dropped to £49 000 after 4 years. Find its percentage rate of decrease.
- An initial investment of £P grows exponentially at a rate of r% per year.

The size of the investment, A, after n years is given by:

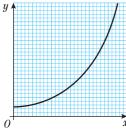
$$A = P\left(\frac{100 + r}{100}\right)^n$$

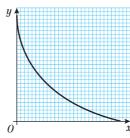
- a Ali wants to invest £3000 for 5 years. Bank A offers an interest rate of 3.6%. Bank B offers an interest rate of 3.75%. How much more interest will she earn in 5 years if she invests her money in Bank B?
- **b** The value of an investment at another bank doubles in 15 years. Work out the interest rate.

- The mass, *m* grams, of a radioactive substance decreases exponentially. It takes 3 days for the mass of the substance to halve. If there is initially 38 grams of the substance, work out how much will remain after 5 days.
- The value of an investment is increasing exponentially. In 3 years the value of the investment increases from £15 000 to £18 119. Assuming that the value of the investment continues to increase at the same rate, what is the value likely to be after it has been invested for a total of 8 years?
- The size of a population is increasing exponentially. Given that it takes 10 years for the population to double, work out the percentage rate at which the population is increasing.

Review

- Exponential growth occurs when a function keeps increasing by the same scale factor. For example, the size of a population of bacteria may double every hour, the amount invested in a bank account will increase each year by the same scale factor as long as the interest rate remains constant.
- Exponential decay occurs when a function keeps decreasing by the same scale factor. For example, the mass of a radioactive element may halve every hour.
- ullet All exponential growth and decay functions can be represented by the equation $y=ka^x$
- For exponential growth, a > 1
- \bullet For exponential decay, 0 < a < 1
- \bullet The value of α , called the multiplier, is the scale factor by which the function grows or decays.
- y represents the size of the population or amount at time x. k represents the initial value of y.





$$y = ka^x (0 < a < 1)$$

- An alternative form of the equation $y = k\alpha^x$ is: $A = P\left(\frac{100 + r}{100}\right)^n$ where: P is the original population (or amount)
 - n is the number of years (or hours etc)
 - \emph{r} is the percentage by which the population is increasing (or decreasing)
 - A is the population (or amount) after n years.

Answers

Chapter 5

A5.1 Get Ready answers

1 625

2 128

3 0.64

4 1

Exercise 5A

 1
 a
 £2000
 b
 £201.55
 c
 i 1.08
 ii 8%

 2
 a
 9 grams
 b
 2.4 grams
 c
 i 0.8
 ii 20%

Time (years)

3 a £30 000

b 30 000 - 10 000 - 10 000 - 2 4

c 30%

4 a 1.12 or 12%

b 135 415

Exercise 5B

1 a 7869 **b** 4.8%

2 a £39 834 **b** 11%

3 a £25.99 **b** 4.73%

4 11.97 grams

5 £24 824

6 7.2%