
Turn over

*P72596RA*P72596RA
©2023 Pearson Education Ltd.
N:1/1/1/1/1/1/1/1/1/1/1

Pearson Edexcel Level 1/Level 2 GCSE (9–1)

Thursday 25 May 2023
Afternoon (Time: 2 hours) 1CP2/02Paper

reference

Computer Science
PAPER 2: Application of Computational Thinking

You must have:
• a computer workstation with appropriate programming language code editing software

and tools, including an IDE that you are familiar with that shows line numbers
• a ‘STUDENT CODING’ folder containing code and data files
• printed and electronic copies of the Programming Language Subset (PLS) document

(enclosed).

Instructions

• Answer all questions on your computer.• Save the new or amended code in the ‘COMPLETED CODING’ folder using the
name given in the question.• Do not overwrite the original code and data files provided to you.• You must not use the internet at any time during the examination.

Information

• The total mark for this paper is 75.• The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.• The ‘STUDENT CODING’ folder in your user area includes all the code and data files
you need.

Advice

• Read each question carefully before you start to answer it.• Save your work regularly.• Check your answers and work if you have time at the end.

2 P72596RA

BLANK PAGE

3

Turn over

P72596RA

Answer ALL questions.

Suggested time: 10 minutes

1 A program is being developed to show the average daily temperature and add up the
costs of buying ice cream.

• It displays each temperature stored in an array of temperatures.

• It adds up all the ice cream costs entered by the user, until the user enters 0.

• It then calculates a discount. When the total cost is over 100.00, the discount is
10%. Otherwise, the discount is 5%.

 Open file Q01.py

 Amend the lines at the bottom of the code to give the:

• name of a constant used in the program

• name of an array used in the program

• line number of an initialisation of a variable with a real number

• line numbers for a selection construct

• line numbers for a repetition construct

• line numbers for an iteration construct

• line number for an instruction that outputs information to the screen.

 Do not add any additional functionality.

 Save your amended code file as Q01FINISHED.py

(Total for Question 1 = 7 marks)

4 P72596RA

Suggested time: 15 minutes

2 A program is written for an exercise routine. It displays the names of warm-up
exercises, stored in an array. The user enters a number. That number of exercises is
selected randomly from the array and displayed.

 Open file Q02.py

 Amend the code to:

• fix the syntax error on original line 4
 import randum

• fix the syntax error on original line 16
 for exercise in exerciseTable

• complete original line 20 to generate a random number between 0 and 4
 index = random.

• complete original line 8 to make the exercise names be string data types
 exerciseTable = ["squats", "planks", pushups,

"lunges", "burpees"]

• fix the IndexError on original line 21
 name = exerciseTable[index + 1]

• fix the NameError on original line 22
 print (naime)

• fix the logic error on original line 19 that causes one less exercise to be printed
than is asked for

 for count in range (numExercises - 1):

• use white space to improve the readability of the code.

 Do not change the functionality of the given lines of code.

 Do not add any additional functionality.

 Save your amended code file as Q02FINISHED.py

(Total for Question 2 = 8 marks)

5

Turn over

P72596RA

Suggested time: 20 minutes

3 A program is used in a shop that sells building materials.

 The program reads in data about screws from a file. The data file is provided.

 The program counts the number of copper screws.

 The program stores the names of 12 bricks in an array. It writes the names of the
bricks to a different file, one name per line. Brick names must be in uppercase.

 The program displays this output on the screen.

Total screws: 26 Copper screws: 5
Wrote 12 brick names to file

 The output shows 26 screws were read from the file, and five are made from copper.
It also shows 12 brick names were written to the file.

 Open file Q03.py

 Amend the code to make the program work and produce the correct output.

 You will need to:

• amend some lines of code

• choose between alternative lines of code. Make a choice by removing the # at the
beginning of the line you choose to execute

• run the program at least twice and check the output file each time to make sure it
meets the requirements.

 Do not change the functionality of the given lines of code.

 Do not add any additional functionality.

 Save your amended code as Q03FINISHED.py

(Total for Question 3 = 15 marks)

6 P72596RA

Suggested time: 25 minutes

4 A program is required to calculate the volume of a prism. All dimensions are entered
by the user. The dimensions are decimal numbers greater than 0

 The volume of this prism is the area of the triangle multiplied by the length of the
prism.

h

b

l

 The formula to calculate the area of the triangle is:

A b h� � �
1

2

• A is the area of the triangle

• b is the width of the base of the triangle

• h is the height of the triangle

 The formula to calculate the volume of this prism is:

V A l� �

• V is the volume of the prism

• A is the area of the triangle

• l is the length of the prism

7

Turn over

P72596RA

 The program must meet these requirements:

• take three decimal inputs from the user

 – all inputs must be greater than zero

• check for invalid inputs, using relational and logical operators

• display an error message if an input is invalid. Invalid input should not be
processed

• process all valid inputs

• calculate the area of the triangle

• display the area of the triangle, rounded to two decimal places

• calculate the volume of the prism

• display the volume of the prism using the <string>.format() function in eight
columns with two decimal places. Include the words ‘cubic units’ after the volume

• in all cases, display a goodbye message just before terminating.

 Test the functionality of the program using the data in this table.

b h l A V

Prism 1 4.567 1.23 89.01 2.81 250.00

Prism 2 2.74 6.01 5.55 8.23 45.70

 Open file Q04.py

 Amend the code to meet the requirements.

 Do not add any additional functionality.

 Save your amended code as Q04FINISHED.py

(Total for Question 4 = 15 marks)

8 P72596RA

Suggested time: 25 minutes

5 A program is being developed to generate a user identification string.

 The letter part of the identification string is made up of the last name joined with the
first letter of the first name. All letters must be in lowercase.

 The number part of the identification string is the sum of the ASCII values for each of
the digits in the date of birth (ddmmyyyy).

 The identification string for the user Viola Bassir, born 15th June 2005, is bassirv403,
all in lowercase.

 Open file Q05.py

 Amend the code to:

• Ensure local and global variables with the same names are not confused

 – change the names of the local variables to distinguish them from the global
variables with the same name

• Welcome the user

 – add a procedure, with no parameters, to display a welcome message for the
user

 – call the welcome procedure before taking input from the user

• Ensure the last name and first name are all lowercase

 – convert last name and first name to lowercase after they are inputted by the
user

• Validate the date of birth in the main program using the built-in string
manipulation subprograms

 – check that only the digits 0 to 9 appear in the date of birth

 – call the makeID() function if the date of birth is valid

 – tell the user if the date of birth is invalid. Invalid input should not be
processed

• Generate the correct number part of the identification string in the makeID()
function

 – correct the logic error caused by using the int() function in the number part
calculation rather than using a function that returns the ASCII value of the
character

 Do not add any additional functionality.

 Save your amended code file as Q05FINISHED.py

(Total for Question 5 = 15 marks)

9P72596RA

Suggested time: 25 minutes

6 A program is required to determine if a user can access a database. The names and
passwords of users are stored in a two-dimensional array.

 Open file Q06.py

 Write a program to meet these requirements.

 Inputs

• Prompt for and accept a user name and a password

 – neither should be blank

 Process

• Implement authentication by searching the array for the user’s name and
password

 – ensure the search works for any length of array

 Output

• Display a suitable message when the correct combination of name and password
is found

• Display a suitable message when the user’s name is found but the password does
not match

• Display a suitable message when the user’s name is not found

 Use comments, white space and layout to make the program easier to read and
understand.

 Do not add any additional functionality.

 Save your amended code as Q06FINISHED.py

(Total for Question 6 = 15 marks)

TOTAL FOR PAPER = 75 MARKS

10 P72596RA

BLANK PAGE

11P72596RA

BLANK PAGE

12 P72596RA

BLANK PAGE

Turn over

*P72596RA*P72596RA
©2023 Pearson Education Ltd.
N:1/1/1/1/1/1/1/1/1/1/1

Pearson Edexcel Level 1/Level 2 GCSE (9–1)

Thursday 25 May 2023
Afternoon (Time: 2 hours) 1CP2/02Paper

reference

Computer Science
PAPER 2: Application of Computational Thinking
Programming Language Subset
Version 4

PLS Booklet
Do not return this Booklet with the question paper.

2 P72596RA

Contents

Introduction .. 4

Comments ... 5

Identifiers ... 5

Data types and conversion .. 5

 Primitive data types .. 5

 Conversion ... 5

 Constants .. 5

 Combining declaration and initialisation ... 5

 Structured data types ... 5

 Dimensions .. 5

Operators ... 6

 Arithmetic operators .. 6

 Relational operators .. 6

 Logical/Boolean operators ... 6

Programming constructs ... 7

 Assignment .. 7

 Sequence .. 7

 Blocking .. 7

 Selection ... 7

 Repetition ... 7

 Iteration ... 7

 Subprograms ... 8

Inputs and outputs ... 8

 Screen and keyboard .. 8

 Files ... 8

Supported subprograms .. 9

 Built-in subprograms .. 9

 List subprograms ...10

 String subprograms ..11

 Formatting strings ..12

3

Turn over

P72596RA

Library modules ..13

 Random library module ..13

 Math library module ...13

 Time library module ...13

 Turtle graphics library module ...14

 Tips for using turtle ...14

 Turtle window and drawing canvas ..14

 Turtle creation, visibility and movement ..15

 Turtle positioning and direction ..15

 Turtle filling shapes ...15

 Turtle controlling the pen ...16

 Turtle circles ...16

 Turtle colours ...16

Console session ..16

Code style ..16

Line continuation ..17

Carriage return and line feed ..17

4 P72596RA

Introduction

The Programming Language Subset (PLS) is a document that specifies which parts of Python 3 are
required in order that the assessments can be undertaken with confidence. Students familiar with
everything in this document will be able to access all parts of the Paper 2 assessment. This does not
stop a teacher/student from going beyond the scope of the PLS into techniques and approaches that
they may consider to be more efficient or engaging.

Pearson will not go beyond the scope of the PLS when setting assessment tasks. Any student
successfully using more esoteric or complex constructs or approaches not included in this document
will still be awarded marks in Paper 2 if the solution is valid.

5

Turn over

P72596RA

The pair of <> symbols indicates where expressions or values need to be supplied. They are not part
of the PLS.

Comments

Anything on a line after the character # is considered a comment.

Identifiers

Identifiers are any sequence of letters, digits and underscores, starting with a letter.

Both upper and lower case are supported.

Data types and conversion

Primitive data types

Variables may be explicitly assigned a data type during declaration.

Variables may be implicitly assigned a data type during initialisation.

Supported data types are:

Data type PLS
integer int

real float
Boolean bool

character str

Conversion

Conversion is used to transform the data types of the contents of a variable using int(), str(), float(),
bool() or list(). Conversion between any allowable types is permitted.

Constants

Constants are conventionally named in all uppercase characters.

Combining declaration and initialisation

The data type of a variable is implied when a variable is assigned a value.

Structured data types

A structured data type is a sequence of items, which themselves are typed. Sequences start with an
index of zero.

Data type Explanation PLS
string A sequence of characters str
array A sequence of items with the same (homogeneous) data type list
record A sequence of items, usually of mixed (heterogenous) data types list

Dimensions

The number of dimensions supported by the PLS is two.

The PLS does not support ragged data structures. Therefore, in a list of records, each record will have
the same number of fields.

6 P72596RA

Operators

Arithmetic operators

Arithmetic operator Meaning

/ division

* multiplication

** exponentiation

+ addition

– subtraction

// integer division

% modulus

Relational operators

Logical operator Meaning

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Logical/Boolean operators

Operator Meaning

and both sides of the test must be true to return true

or either side of the test must be true to return true

not inverts

7

Turn over

P72596RA

Programming constructs

Assignment

Assignment is used to set or change the value of a variable.

<variable identifier> = <value>

<variable identifier> = <expression>

Sequence

Every instruction comes one after the other, from the top of the file to the bottom of the file.

Blocking

Blocking of code segments is indicated by indentation and subprogram calls. These determine the
scope and extent of variables they declare.

Selection

if <expression>:
 <command>

If <expression> is true, then command is executed.

if <expression>:
 <command>
else:
 <command>

If <expression> is true, then first <command> is
executed, otherwise second <command> is executed.

if <expression>:
 <command>
elif <expression>:
 <command>
else:
 <command>

If <expression> is true, then first <command> is
executed, otherwise the second <expression> test is
checked. If true, then second <command> is executed,
otherwise third <command> is executed.

Supports multiple instances of ‘elif’.

The ‘else’ is optional with the ‘elif’.

Repetition

while <condition>:
 <command>

Pre-conditioned loop. This executes <command> while
<condition> is true.

Iteration

for <id> in <structure>:
 <command>

Executes <command> for each element of a
data structure, in one dimension.

for <id> in range (<start>, <stop>):
 <command>

Count-controlled loop. Executes <command> a
fixed number of times, based on the numbers
generated by the range function. <stop> is
required. <start> is optional.

for <id> in range (<start>, <stop>,
<step>):

 <command>

Same as above, except that <step> influences
the numbers generated by the range function.
<stop> is required. <start> and <step> are
optional.

8 P72596RA

Subprograms

def <procname> ():
 <command>

A procedure with no parameters

def <procname> (<paramA>, <paramB>):
 <command>

A procedure with parameters

def <funcname> ():
 <command>
 return (<value>)

A function with no parameters

def <funcname> (<paramA>, <paramB>):
 <command>
 return (<value>)

A function with parameters

Inputs and outputs

Screen and keyboard

print (<item>) Displays <item> on the screen

input (<prompt>) Displays <prompt> on the screen and
returns the line typed in

Files

The PLS supports manipulation of comma separated value text files.

File operations include open, close, read, write and append.

<fileid> = open (<filename>, "r") Opens file for reading
for <line> in <fileid>: Reads every line, one at a time
<alist> = <fileid>.readlines () Returns a list where each item is a line from

the file
<aline> = <fileid>.readline () Returns a line from a file. Returns an empty

string on the end of the file
<fileid> = open (<filename>, "w") Opens a file for writing
<fileid> = open (<filename>, "a") Opens a file for appending
<fileid>.writelines (<structure>) Writes <structure> to a file. <structure> is a

list of strings
<fileid>.write (<aString>) Writes a single string to a file
<fileid>.close () Closes file

9

Turn over

P72596RA

Supported subprograms

Built-in subprograms

The PLS supports these built-in subprograms.

Subprogram Description

bool (<item>) Returns <item> converted to the equivalent
Boolean value

chr (<integer>) Returns the string which matches the Unicode
value of <integer>. The first 128 characters of
Unicode are equivalent to ASCII.

float (<item>) Returns <item> converted to the equivalent
real value

input (<prompt>) Displays the content of prompt to the screen
and waits for the user to type in characters
followed by a new line

int (<item>) Returns <item> converted to the equivalent
integer value

len (<object>) Returns the length of the <object>, such as a
string, one-dimensional or two-dimensional
data structure

ord (<char>) Returns the integer equivalent to the Unicode
string of the single character <char>. The first
128 characters of Unicode are equivalent to
ASCII.

print (<item>) Prints <item> to the display

range (<start>, <stop>, <step>) Generates a list of numbers using <step>,
beginning with <start> and up to, but not
including, <stop>. A negative value for <step>
goes backwards. <stop> is required. <start>
and <step> are optional. The default value for
<start> is zero. The default value for <step> is
positive one.

round (<x>, <n>) Rounds <x> to the number of <n> digits after
the decimal (uses the 0.5 rule). The <n> is
optional. If omitted, the function returns the
nearest integer to <x>.

str (<item>) Returns <item> converted to the equivalent
string value

10 P72596RA

List subprograms

The PLS supports these list subprograms.

Subprogram Description

<list>.append (<item>) Adds <item> to the end of the list

del <list> [<index>] Removes the item at <index> from list

<list>.insert (<index>, <item>) Inserts <item> just before an existing one
at <index>

<aList> = list ()
<aList> = []

Two methods of creating a list structure.
Both are empty.

11

Turn over

P72596RA

String subprograms

The PLS supports these string subprograms.

Subprogram Description
len (<string>) Returns the length of <string>
<string>.find (<substring>,
<start>, <end>)

Returns the location of the first instance of
<substring> in the original <string>, reading from
left to right. <start> is the index to begin the find. The
default is zero. <end> is the index to stop the find.
The default is the end of the string. Returns -1, if not
found.

<string>.index (<substring>,
<start>, <end>)

Returns the location of the first instance of
<substring> found in the original <string> as read
from left to right. Raises an exception if not found.
<substring> is required. <start> and <end> are
optional. The default value for <start> is zero.
The default value for <end> is the end of the string.

<string>.isalpha () Returns True, if all characters are alphabetic, A–Z
<string>.isalnum () Returns True, if all characters are alphabetic, A–Z and

digits (0–9)
<string>.isdigit () Returns True, if all characters are digits (0–9),

exponents are digits
<string>.replace (<s1>, <s2>) Returns original string with all occurrences of <s1>

replaced with <s2>
<string>.split (<char>) Returns a list of all substrings in the original, using

<char> as the separator
<string>.strip (<char>) Returns original string with all occurrences of <char>

removed from the front and back
<string>.upper () Returns the original string in uppercase
<string>.lower () Returns the original string in lowercase
<string>.isupper () Returns True, if all characters are uppercase
<string>.islower () Returns True, if all characters are lowercase
<string>.format (<placeholders>) Formats values and puts them into the <placeholders>

12 P72596RA

Formatting strings

Output can be customised to suit the problem requirements and the user’s needs by forming string
output.

<string>.format () can be used with positional placeholders and format descriptors.

Here is an example:

layout = “{:>10} {:^5d} {:7.4f}”
print (layout.format (“Fred”, 358, 3.14159))

Category Description
Numbers Decimal integer (d), Fixed point (f)
Alignment Left (<), Right (>), Centre (^)
Field size The total width of a field, regardless of how many columns are occupied

The * operator can be used to generate a line of repeated characters, for example “=” * 10 will
generate “==========”.

Concatenation of strings is done using the + operator.

String slicing is supported. myName[0:2] gives the first two characters in the variable myName.

13

Turn over

P72596RA

Library modules

The functionality of a library module can only be accessed once the library module is imported into
the program code.

Statement Description

import <library> Imports the <library> module into the current program

Random library module

The PLS supports these random library module subprograms.

Subprogram Description

random.randint (<a>,) Returns a random integer X so that <a> <= X <=

random.random () Returns a float number in the range of 0.0 and 1.0

Math library module

The PLS supports these math library module subprograms and constant.

Subprogram or constant Description

math.ceil (<r>) Returns the smallest integer not less than <r>

math.floor (<r>) Returns the largest integer not greater than <r>

math.sqrt (<x>) Returns the square root of <x>

math.pi The constant Pi (Π)

Time library module

The PLS supports this time library module subprogram.

Subprogram Description

time.sleep (<sec>) The current process is suspended for the given number of
seconds, then resumes at the next line of the program

14 P72596RA

Turtle graphics library module

Tips for using turtle

The default mode for the PLS turtle is “standard”. This means that when a turtle is created, it initially
points to the right (east) and angles are counterclockwise. You can change modes using
turtle.mode ().

The turtle window is one size and the turtle drawing canvas (inside the window) can be a different
size. To make the turtle window bigger, a screen needs to be created and set up. Here is an example:

WIDTH = 800
HEIGHT = 400
screen = turtle.Screen ()
screen.setup (WIDTH, HEIGHT)

To make the drawing canvas bigger use <turtle>.screensize ().

In some development environments, the turtle window will close as soon as the program completes.
There are two ways to keep it open:

• Add turtle.done () as the last line in the code file. This will keep the window open
until closed with the exit cross in the upper right-hand corner. It also allows scrollbars
on the window.

• Add a line asking for keyboard input, such as input(), as the last line. This will
keep the window open until the user presses a key in the console session. The scrollbars
will not work.

Turtle window and drawing canvas

The PLS supports these turtle library module subprograms to control the window and drawing
canvas. Notice that these subprograms do not use the name of the turtle you create to the left of the
dot, but the library name, “turtle” or a <window> variable.

Subprogram Description

<window>.setup (<width>, <height>) Sets the size of the turtle window to <width>
× <height> in pixels. Requires use of
turtle.Screen () to create <window> first.

turtle.done () Use as the last line of the file to keep the turtle
window open until it is closed using the exit
cross in the upper right-hand corner of the
window

turtle.mode (<type>) <type> is one of the strings “standard” or “logo”.
A turtle in standard mode, initially points to the
right (east) and angles are counterclockwise. A
turtle in logo mode, initially points up (north)
and angles are clockwise.

turtle.Screen () Returns a variable to address the turtle
window. Use with <window>.setup().

turtle.screensize (<width>, <height>) Makes the scrollable drawing canvas size equal
to <width> × <height> in pixels. Note, use
with turtle.done () so scrollbars will be active.

15

Turn over

P72596RA

Turtle creation, visibility and movement

The PLS supports these turtle library module subprograms to control the turtle creation, visibility
and movement.

Subprogram Description

<turtle> = turtle.Turtle () Creates a new turtle with the variable name <turtle>

<turtle>.back (<steps>) Moves backward (opposite-facing direction) for
number of <steps>

<turtle>.forward (<steps>) Moves forward (facing direction) for number of
<steps>

<turtle>.hideturtle () Makes the <turtle> invisible

<turtle>.left (<degrees>) Turns anticlockwise the number of <degrees>

<turtle>.right (<degrees>) Turns clockwise the number of <degrees>

<turtle>.showturtle () Makes the turtle visible

<turtle>.speed (<value>) The <value> can be set to “fastest”, “fast”, “normal”,
“slow”, “slowest”. Alternatively, use the numbers 1 to 10
to increase speed. The value of 0 is the fastest.

Turtle positioning and direction

The PLS supports these turtle library module subprograms to control the positioning and direction.

Subprogram Description

<turtle>.home () Moves to canvas origin (0, 0)

<turtle>.reset () Clears the drawing canvas, sends the turtle home and
resets variables to default values

<turtle>.setheading (<degrees>) Sets the orientation to <degrees>

<turtle>.setposition (<x>, <y>) Positions the turtle at coordinates (<x>, <y>)

Turtle filling shapes

The PLS supports these turtle library module subprograms to control filling.

Subprogram Description

<turtle>.begin_fill () Call just before drawing a shape to be filled

<turtle>.end_fill () Call just after drawing the shape to be filled. You must
call <turtle>.begin_fill() before drawing.

<turtle>.fillcolor (<colour>) Sets the colour used to fill. The input argument can be
a string or an RGB colour, for example: "red", "#551A8B",
"(0, 35, 102)".

16 P72596RA

Turtle controlling the pen

The PLS supports these turtle library module subprograms to control the pen.

Subprogram Description

<turtle>.pencolor (<colour>) Sets the colour of the pen. The input argument can be
a string or an RGB colour, for example: "red", "#551A8B",
"(0, 35, 102)".

<turtle>.pendown () Puts the pen down

<turtle>.pensize (<width>) Makes the pen the size of <width> (positive number)

<turtle>.penup () Lifts the pen up

Turtle circles

The PLS supports this turtle library module subprogram to draw a circle.

Subprogram Description

<turtle>.circle (<radius>, <extent>) Draws a circle with the given <radius>. The
centre is the <radius> number of units to
the left of the turtle. That means, the turtle is
sitting on the edge of the circle. The parameter
<extent> does not need to be given, but
provides a way to draw an arc, if required. An
extent of 180 would be half a circle.

Turtle colours

Python colours can be given by using a string name. There are many colours and you can find
information online for lists of all the available colours.

Here are a few to get you started:

blue black green yellow

orange red pink purple

indigo olive lime navy

orchid salmon peru sienna

white cyan silver gold

Console session

A console session is the window or command line where the user interacts with a program. It is
the default window that displays the output from print () and echoes the keys typed from
the keyboard.

It will appear differently in different development tools.

Code style

Although Python does not require all arithmetic and logical/Boolean expressions to be fully
bracketed, it might help the readability to bracket them. This is especially useful if the programmer or
reader is not familiar with the order of operator precedence.

17P72596RA

The same is true of spaces. The logic of a line can be more easily understood if a few extra spaces are
introduced. This is especially helpful if a long line of nested subprogram calls is involved. It can be
difficult to read where one ends and another begins. The syntax of Python is not affected, but it can
make understanding the code much easier.

Line continuation

Long code lines may also be difficult to read, especially if they scroll off the edge of the display
window. It’s always better for the programmer to limit the amount of scrolling.

There are several ways to break long lines in Python.

Python syntax allows long lines to be broken inside brackets (), square brackets [], and braces {}. This
works very well, but care should be taken to ensure that the next line is indented to a level that aids
readability. It is even possible and recommended to add an extra set of brackets () to expressions to
break long lines.

Python also has a line continuation character, the backslash \ character. It can be inserted, following
strict rules, into some expressions to cause a continuation. Some editors will automatically insert the
line continuation character if the enter key is pressed.

Carriage return and line feed

These affect the way outputs appear on the screen and in a file. Carriage return means to go back
to the beginning of the current line without going down to the next line. Line feed means to go
down to the next line. Each is a non-printable ASCII character, that has an equivalent string in
programming languages.

Name Abbreviation ASCII hexadecimal String
Carriage return CR 0x0D "\r"
Line feed LF 0x0A "\n"

These characters are used in some combination to control outputs. Unfortunately, not every
operating system uses the same. However, editors automatically convert input and output files to
make sure they work properly. In Python, print () automatically adds them so that the console
output appears on separate lines.

When writing code to handle files, a programmer will need to remove some of these characters when
reading lines from files and add them when writing lines to files. If needed, they are added with string
concatenation. If needed to be removed, they are removed using the strip () subprogram.

18 P72596RA

BLANK PAGE

19P72596RA

BLANK PAGE

20 P72596RA

BLANK PAGE

	P72596RA QP GCSE Computer Science 1CP2 02
	P72596RA SB GCSE Computer Science 1CP2 02

