

Pearson Edexcel

Level 1/Level 2 GCSE

(9–1) in Computer

Science (1CP2)

Good Programming Practice

Guide

First teaching September 2020

First certification from 2022

Issue 1.2

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 2 of 40 Date: January 2023

Contents
Introduction .. 4

Readability .. 5

Layout .. 5

Comments ... 5

Identifiers .. 6

White space .. 6

Line continuation .. 7

Data types and conversion .. 8

Primitive data types .. 8

Variable declaration .. 8

Combining declaration and initialisation .. 9

Conversion .. 9

Constants .. 9

Structured data types ... 10

Arrays and records .. 10

Dimensions .. 10

Multiple parallel arrays ... 11

String manipulation ... 12

Slicing .. 12

Concatenation ... 12

Operators .. 12

Arithmetic operators ... 12

BIDMAS ... 12

Relational operators ... 13

Logical/Boolean operators .. 13

Brackets ... 13

Programming constructs ... 14

Assignment .. 14

Sequence ... 14

Blocking ... 14

Selection .. 15

Ordering of test conditions ... 16

Repetition and iteration .. 16

Repetition .. 17

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 3 of 40 Date: January 2023

Iteration .. 17

Count-controlled and condition-controlled loops .. 19

Subprograms ... 20

Procedures and functions ... 20

Parameters and arguments .. 20

Using subprograms ... 21

Global and local variables ... 22

Code example ... 22

Global keyword ... 24

Inputs and outputs .. 24

Screen output .. 24

Commas versus concatenation ... 25

Non-printable control characters ... 25

Keyboard input .. 26

Files ... 26

Reading from a file .. 27

Writing to a file ... 27

Code example ... 28

Supported subprograms ... 32

Built-in subprograms ... 32

List subprograms ... 34

String subprograms ... 35

Library modules .. 37

Random library module .. 37

Math library module ... 38

Time library module .. 38

Turtle graphics library module .. 38

Console Session ... 39

Functionalities not in the PLS .. 39

Flow control statements ... 39

Break ... 39

Exit ... 40

Exception handling .. 40

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 4 of 40 Date: January 2023

Introduction

The Programming Language Subset (PLS) is a document that specifies which parts of Python 3 are

required in order that the Paper 2 assessment for GCSE Computer Science can be undertaken with

confidence. Students familiar with everything in that document will be able to access all parts of the

Paper 2 assessment. This does not stop a teacher/student from going beyond the scope of the PLS

into techniques and approaches that they may consider to be more efficient or engaging. Pearson

will not go beyond the scope of the PLS when setting assessment tasks.

This Good Programming Practice Guide (GPPG) is a document that expands on the content of the

PLS, by providing more in-depth information and a wide range of examples.

The information in this document should not prevent students or teachers from developing their

own style and techniques. Teachers are encouraged to amend the examples in this document to suit

the needs of their own students.

While students will have a copy of the PLS available during the Paper 2 exam, they will not be

allowed a copy of the GPPG.

Please read this document together with the Programming Language Subset (PLS).

The PLS contains the definitions for programming constructs and subprograms.

This document contains explanations and examples for them. The definitions are not

repeated in this document.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 5 of 40 Date: January 2023

Readability
(Specification point: 6.1.4)

It is good programming practice to use techniques to ensure that code is easy to read, understand

and maintain.

Layout
Code files should be laid out consistently to help others read the program code and increase its

maintainability. One way this can be done is by grouping statements that are related to each other

and preceding each group with a comment indicating what it holds. Here is one layout that works

well to help organise code. It is the layout used in when setting Paper 2 assessment tasks.

Starting with this layout and placing statements in the correct sections will make the code more

readable and easier to debug. In addition, adhering to a layout such as this can help students avoid

unintended use of nested subprogram definitions and using an excessive number of global variables.

Comments
In Python, anything on a line after the ‘#’ character is considered a comment. Comments may

appear on the same line as, but after, code. They can also appear on a line all by themselves.

Students should be encouraged to use comments to explain the logic of their code, especially of

code blocks, such as ‘if…elif…else’ and ‘for…in range()’, and subprograms. However, adding a

comment to every line is overkill, as are comments that simply duplicate the code.

Excessive commenting simply adds visual clutter and makes code more difficult to read.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 6 of 40 Date: January 2023

Identifiers
Students should be encouraged to select variable names and subprogram interfaces that are

meaningful in the context of the problem. They should avoid using single letter identifiers.

There are many different ways to format identifier names. One way is to use camel case. This is

where the names of variables and subprograms are started with a lowercase letter. Each change of

word or abbreviation begins with an uppercase letter.

This table shows examples of using camel case for identifier names.

count bigList up_counter countAnimalTypes isValidCounter()

name primaryKey last_name studentFirstName findStudentName()

key discountCode blue_green dbForeignKey showKeys()

Camel case is the method used when setting Paper 2 assessment tasks. However, it is not obligatory

for students to use this method.

White space
Good use of white space also helps make programs easier to read. Students should be encouraged

to use white space to separate code blocks. (See also the Blocking section.)

Double spacing code is not helpful and should be avoided.

The logic of a line of code can sometimes be more easily understood if a few extra spaces are

introduced. This is especially helpful if a long line of nested subprogram calls is involved. It can be

difficult to see where one ends and another begins. The syntax of Python is not affected, but it can

make understanding the code much easier.

This table shows an example of a short program that is difficult to read and how extra spaces can be

used to aid readability.

Difficult to read
word=input("Enter a long word: ")

substring=input "Enter a substring: ")

if((word.upper().find(substring.upper(),0,len(word)-5))!=-1):

 print("Found")

else:

 print("Not found")

Addition of extra spaces and blank line
word = input ("Enter a long word: ")

substring = input ("Enter a substring: ")

if ((word.upper().find (substring.upper(), 0, len (word) - 5)) != -1):

 print ("Found")

else:

 print ("Not found")

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 7 of 40 Date: January 2023

Line continuation
Long code lines may be difficult to read, especially if they scroll off the edge of the display window.

It is always better to limit the amount of scrolling.

Python syntax allows long lines to be broken inside brackets (), square brackets [], and braces {}.

This works very well, but care should be taken to ensure that the next line is indented to a level that

aids readability. It is even possible and recommended to add an extra set of brackets () to

expressions to break long lines.

Here is an example of a line that has been broken around logical operators and between the

outermost brackets.

if ((userChoice != "Q") and (userChoice != "A") and

 (userChoice != "B") and (userChoice != "C") and

 (userChoice != "D") and (userChoice != "E")):

Here is an example of a line that has been broken between square brackets.

newRecord = [idNum,

 lastName, firstName,

 birthMonth, birthYear]

Python also has a line continuation character, the backslash ‘\’. It can be inserted, following strict

rules, into some expressions to cause a continuation. Some editors will automatically insert the line

continuation character if the enter key is pressed.

Here is an example of a line that has been broken using the continuation character.

nextRecord = treeNames[index] + "," + \

 str (treeCounts[index]) + "," + \

 str (treeScore[index])

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 8 of 40 Date: January 2023

Data types and conversion
(Specification points: 6.2.1, 6.3.1, 6.3.2)

Primitive data types
The four primitive data types are integer, real, Boolean and character. In Python these are

designated as ‘int’, ‘float’, ‘bool’ and ‘str.’ (Note, Python does not have a dedicated character data

type so uses ‘str ‘instead.)

Variable declaration
It is important that students understand the difference between declaring and initialising variables.

Declaration allocates memory based on the size of the indicated data type. Initialisation sets the

contents of the allocated memory.

Variables may be explicitly assigned a data type during declaration or, as is most commonly done in

Python, may be implicitly typed via the data type of the first value assigned to them (see below).

It is good practice to set the data type of a variable during the initial creation phase to help

document the logic and understanding of the solution.

Once a variable has been associated with a data type, its type should not be changed to a different

one during the life of the program.

This table shows examples of variable declarations that allocate memory, based on the size of the

data type indicated.

Data type Explanation PLS Example declaration

integer A whole number (negative or positive) int count = int ()

real

A number with a fractional part, also

known as decimal (negative or

positive)

float thePrice = float ()

Boolean
Data that can only have one of two

values, either true or false
bool lights = bool ()

character
A single letter, number, symbol, etc.,

usually available from the keyboard
str myInitial = str ()

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 9 of 40 Date: January 2023

Combining declaration and initialisation
Implicit data typing is done by associating an implied data type with the variable when it is assigned

its initial value.

This table shows examples of implicit data typing, achieved by assigning an initial value.

Example Description

TAX = 0.175 A real constant initialised to 0.175

count = 0 An integer variable initialised to 0

windowOpen = True A Boolean variable initialised to True

myInitial = “J” A character variable initialised to “J”

Conversion
Conversion is used to transform the type of an expression before processing it.

Here is an example of conversion:

count = int (input (“Enter a number”))

Technically the ‘input()’ function returns the string value that the user typed in. However, the string

value is immediately converted to an integer by the ‘int()’ function. It can then be used in

calculations.

Here is another example of conversion:

balance = float (count)

In this example, a copy of the contents of the variable ‘count’ is taken. The copy is converted to

float, a decimal number. The original contents of ‘count’ has not changed, nor has the original data

type of ‘count’ changed from an integer to a float. The variable ‘balance’ is the only variable with a

data type of float.

Constants
Constants are identifiers that are set only once in the lifetime of the program. The use of constants

aids readability and maintainability.

Constants are conventionally named in all uppercase characters. This identifier name is then used to

represent the constant value throughout the program code. Should at any stage this value need to

be altered, the change only has to be made at one location in the whole program code.

This table shows examples of declaring and initialising constants.

TAX = 0.175 CORNERS = 4 TITLE = str ()

TITLE = “Accounts”

MAX_COUNT = 34

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 10 of 40 Date: January 2023

Although Python does not support constants in the same way as other high-level languages,

students are expected to use constants in their program code. This means that they should:

• write constant names in capital letters to distinguish them from variables

• assign values to constants at the start of the program and ensure that these values are not

changed during execution of the entire program.

Structured data types
(Specification points 6.2.1, 6.3.1, 6.3.3)

A structured data type is a collection of items, which themselves are typed. Each item in the

collection is accessible using an index. Indices start with the value 0.

Arrays and records
This table shows examples of the different structured data types.

Data

type

Explanation PLS Example

string A sequence of characters str myName = str ()

myName = “Joseph”

array A sequence of the same type

item, with a fixed length

[] myGrades = [80, 75, 90]

record A sequence of items, usually of

mixed data types, with a fixed

length

[] studentRecord = [1524,

“Jones”, “Rebecca”, True,

78.45]

In the above table:

• studentRecord[2] holds the value “Rebecca”,

• myGrades[0] holds the value 80,

• myName[5] holds the value “h”.

Note, that the data structure array is not the same as the Python data structure list. However, in the

PLS, they are both created using the ‘list’ construct.

If a list holds homogenous data (meaning that the data type is the same for all elements), it can be

thought of conceptually as an array. If a list holds heterogenous data (meaning a mixture of data

types), it can be thought of conceptually as a ‘record’. The record, in this case, is similar to a record

in a database where fields may have different types.

Dimensions
Students are only expected to work with one- and two-dimensional data structures, no more.

A one-dimensional data structure stores elements, each of which can be accessed using a single

index value. Whereas, each element in a two-dimensional data structure is itself a one-dimensional

data structure. Two indices are needed to access a single item within a two-dimensional data

structure. Indices start with the value 0.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 11 of 40 Date: January 2023

Note that students are not expected to work with ragged two-dimensional data structures (meaning

ones containing records that do not necessarily have the same number of fields).

This table shows examples of two-dimensional data structures.

Data type Explanation PLS equivalent Example

Two-

dimensional

array

A collection of one-

dimensional arrays. Each

one-dimensional array has

the same number of

elements. Each element is

the same data type.

[[], [], … []] sensorReadings = [

 [80, 75, 90],

 [15, 25, 35],

 [82, 72, 62]]

Two-

dimensional

array of

records

A collection of one-

dimensional records. Each

one-dimensional record has

the same number of fields.

Fields are of mixed data

types.

[[], [], … []] recordTable = [

[1524, “Jones”, “Rebecca”,

True, 78.45],

[5821, “Lawson”, “Martin”,

False, 23.98]]

In the above table:

• recordTable[0] holds an entire record [1524, “Jones”, “Rebecca”, True, 78.45], which

itself is a one-dimensional structure with mixed data types.

• sensorReadings[0][1] holds the value 75.

• recordTable[1][2] holds the value “Martin”.

Multiple parallel arrays
It is possible to use a number of separate one-dimensional arrays together. The items at the same

position could be associated with each other. For example, one array could hold all the items in a

kitchen and the second array could hold the count of each item. A single index could then be used

to move across both arrays in parallel, processing an item from each of them.

This code shows an example of using two arrays in parallel.

Multiple parallel arrays Output

things = ["cup", "plate", "fork", "spoon"]

counts = [5, 8, 4, 3]

for index in range (len (things)):

 print (things[index], counts[index])

cup 5

plate 8

fork 4

spoon 3

While this approach is acceptable, storing the associated data as a two-dimensional array of records

is good practice. When using multiple arrays, there is a greater opportunity for errors to be

introduced in the process of adding, deleting, or replacing items. There is also the possibility for the

associations to become mismatched, by updating one and not the other. For every amendment,

there are multiple operations, any of which could go wrong.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 12 of 40 Date: January 2023

String manipulation
Students should be familiar with common string manipulation techniques, including slicing and

concatenation. (See also the String subprograms section.)

Slicing
Python supports string slicing which returns a specific substring of a given list or string. For example,

this code outputs the first two characters, i.e. “Jo”.

myName = "Joseph"

slice = myName[0:2]

print (slice)

Concatenation
Concatenation of strings is done using the ‘+’ operator. (See also the Screen output section.)

Multiplying a string is done using the ‘*’ operator. Multiplying a string by an integer n concatenates

the string with itself n times.

Operators
(Specification points: 6.5.1, 6.5.2, 6.5.3)

Arithmetic operators
This table shows examples of the arithmetic operators.

Operator Operation Example

/ division total / number

Always returns a real number

* multiplication count * 7

** exponentiation (raising to the power) radius ** 2

The same as radius2

+ addition total = total + 1

- subtraction difference = total - count

// integer division (integer part of result)

5 // 3 is 1

number = total // count

% modulus (remainder after division)

5 % 3 is 2

number = total % count

BIDMAS
Students need to know the order of precedence rules that determine the order in which a

calculation is executed. BIDMAS stands for Brackets, Indices (exponentiation), Division,

Multiplication, Addition, Subtraction.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 13 of 40 Date: January 2023

Relational operators
This table shows examples of the relational operators.

Operator Operator meaning Example Evaluates to

== Equal to “fred” == “sid” False

!= Not equal to 8 != 8 False

> Greater than 10 > 2

“Fred” > “Bob”

True

True

>= Greater than or equal to 5 >= 5 True

< Less than 4 < 34

“Wilma” < “Fred”

True

False

<= Less than or equal to 2 <= 109 True

Logical/Boolean operators
This table shows examples of the Boolean/logical operators.

Operator Description Example Evaluates to

and Returns True if

both conditions are

true

count = 0

index = 44

(count == 0) and (index > 2)

(count > 4) and (index > 2)

True

False

or Returns True if one

of the conditions is

true

name = “Fred”

age = 13

(name == “Alan”) or (age > 20)

(name < “Alan”) or (age > 5)

False

True

not Reverses the

outcome of the

expression; True

becomes False,

False becomes True

rain = True

not rain

False

Brackets
Although Python does not require all arithmetic and logical/Boolean expressions to be fully

bracketed, it often improves readability to bracket them. The addition of brackets can often help

make understanding the logic and debugging easier.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 14 of 40 Date: January 2023

Programming constructs
(Specification points: 6.2.1, 6.2.2)

Assignment
The assignment operator ‘=’ is used to set or change the value of a variable. The expression on the

right is evaluated and the result is stored into the location on the left.

This table shows examples of using assignment.

Example Description

count = 0 Puts the integer value 0 into the variable count.

myName = “Fred” Puts the string value ‘Fred’ into the variable myName.

count = count + 1

Gets the current value of count adds one to it and

stores it back into the variable count

check = myName.isalpha ()

Calls the function <string>.isalpha() using the

contents of the variable myName. The result is

stored into the variable check.

Sequence
A sequence is a set of instructions that are executed one after another in order.

This table shows examples of using sequence.

Example Description

count = 0

myName = “Fred”

count = count + 1

Firstly, sets the value of the variable count.

Secondly, sets the value of the variable myName.

Thirdly, increments the value of count.

Blocking
Blocking of code segments is indicated by indentation and subprogram calls. These determine the

scope and extent of variables they create. Examples of blocking can be seen in the following

sections that introduce the other programming constructs.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 15 of 40 Date: January 2023

Selection
In programming, selection is the way to make decisions based on whether a condition evaluates to

True or False. Selection is implemented using an ‘if’ statement.

• Where there is no specific action to take if the condition evaluates to False an ‘if’ statement is

used on its own.

• Where there is one action to take if the condition evaluates to True and a different action to

take if it evaluates to False, an ‘if…else’ is used.

• Where there are multiple conditions to be checked, an ‘if…elif…else’ is used. It is good

practice to include the ‘else’ as a catch-all when none of the previous conditions evaluate to

True.

Nesting of selection statements is permitted. However, the use of ‘else’ and ‘elif’ is preferable since

it makes the logic clearer.

Using two or more separate ‘if’ statements, rather than combining them into one, makes the code

less efficient and should be avoided.

This table shows examples of a selection statement and how to format it.

Example Description

if (count == 1):

 print ("In first block")

It is possible to use only an ‘if’. Execution will

always continue to the line following the print,

whether or not the print is executed.

if (count == 1):

 print ("In first block")

else:

 print ("In second block")

When there are only two options, then use an

‘if…else’.

if (count == 1):

 print ("In first block")

elif (count == 2):

 print ("In second block")

In this example, nothing will be printed for any

counts above 2 or below 1.

if (count == 1):

 print ("In first block")

elif (count == 2):

 print ("In second block")

else:

 print ("In third block")

Here, the ‘else’ block will be executed for any

numbers other than 1 and 2.

if (count == 1):

 print ("In first block")

elif (count == 2):

 print ("In second block")

elif (count == 3):

 print ("In third block")

elif (count == 4):

 print ("In fourth block")

This statement only deals with the numbers

from 1 to 4, inclusive. Notice that in this case

the ‘else’ is not required.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 16 of 40 Date: January 2023

Ordering of test conditions
In some cases, the order of the test conditions is important. This occurs when making decisions

based on ranges, such as grades or ranks. For grades, the tests should start at the top and use

greater than, or start at the bottom and use less than. Otherwise, a grade could fall into the wrong

range.

In this example, if the tests for ‘Bronze’ and ‘Silver’ were reversed, then a score of 55, which should

be ‘Bronze’ would be awarded ‘Silver’.

Example Output

score = 55

if (score < 40):

 print ("No award")

elif (score < 60):

 print ("Bronze")

elif (score < 80):

 print ("Silver")

else:

 print ("Gold")

Bronze

score = 55

if (score < 40):

 print ("No award")

elif (score < 80):

 print ("Silver")

elif (score < 60):

 print ("Bronze")

else:

 print ("Gold")

Silver

Repetition and iteration
In programming, a loop is used when a sequence of instructions needs to be repeated.

The terms repetition and iteration are often used interchangeably to describe the action of loops.

However, differentiating between them can benefit students.

This table how repetition and iteration differ.

Term Definition

Repetition To go around a loop executing the same sequence of instructions
whilst a condition is True.

Iteration To go around a loop executing the same sequence of instructions
until all the items in a data structure have been processed.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 17 of 40 Date: January 2023

Repetition
Repetitive loops keep repeating as long as a condition remains True.

This table shows examples of using repetition.

Example Description

while (count > 0):

 print ("Count is", count)

 count = count – 1

The number of times through this loop

depends on the initial value of the variable

count.

key = input ("Enter Y or N")

while (key != "N"):

 print ("Going around again")

 key = input ("Enter Y or N")

The user is in control of this loop. The loop

will keep executing until the user types in a

‘N’ when asked to enter ‘Y’ or ‘N’. Notice

that any value besides ‘N’ is interpreted as

‘Y’.

key = “X”

while (key != “N”):

 key = input (“Enter Y or N”)

 if (key != “N”):

 print (“Going again”)

 else:

 print (“Working”)

This example shows nesting a selection

(‘if…else’) inside the repetition (‘while’).

Iteration
Iterative loops keep repeating until all the items in a data structure have been processed.

The ‘for…in’ construct allows every item in a one-dimensional data structure to be processed as it is

encountered.

Nested ‘for… in’ loops are used to iterate through two-dimensional data structures. The outer loop

iterates through the records and the inner through the fields in each record.

Unfortunately, the terms ‘iteration’ and ‘repetition’ are not synonymous with the Python language

constructs for looping.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 18 of 40 Date: January 2023

This table shows examples of using iteration.

Example Description

numbers = [10, 20, 30, 40, 50]

for num in numbers:

 print (num * 2)

This example outputs each number in

the array numbers, multiplied by 2.

Each output is on a separate line.

theTable =[

 [152,"Jones",78.45],

 [938,"Black",24.12],

 [454,"Green",32.00]]

for student in theTable:

 print ("Name:",

 student[1],

 "Balance:",

 student[2])

This ‘for’ loop processes every student

in theTable. In each pass of the

loop, the variable student holds a

record, which is a one-dimensional data

structure. Individual fields in student

are accessed using indexing.

This is the output from this loop:

Name: Jones Balance: 78.45

Name: Black Balance: 24.12

Name: Green Balance: 32.0
for ndx in range (0, len (theTable)):

 print ("ID:", theTable[ndx][0])

This example uses two indices to access

a field in each record of theTable.

This is the output from this loop:

ID: 152

ID: 938

ID: 454
weeklySales = [[120.00, 211.09, 99.00,

58.12, 119.45, 167.34, 308.01], [78.24,

165.59, 101.12, 96.42, 106.05, 178.24,

297.15], [132.70, 203.19, 123.57,

86.90, 138.11, 177.91, 402.64]]

totalSales = 0.0

for week in weeklySales:

 for day in week:

 totalSales = totalSales + day

print (totalSales)

This example uses nested loops to

process all the fields in each record of
weeklySales.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 19 of 40 Date: January 2023

Count-controlled and condition-controlled loops
The terms associated with the looping constructs and how they are used to describe actions in a

program are sometimes confusing.

This table distinguishes between count-controlled and condition-controlled loops.

Term Definition

Count-controlled loop The number of passes around the loop is already known or can be
determined before the loop starts.

Condition-controlled loop The number of passes around the loop is not known before the loop
starts. The loop keeps going around as long as a condition is True.

Condition-controlled loops are particularly useful when a programmer does not know in advance

how many times a loop must go around.

This table shows examples of each of the Python looping constructs specified in the Programming

Language Subset, and how each can be categorised using the terms defined above.

Python example Is a type of Is an
example of

choice = "Y"

while (choice != "N"):

 choice = input ("You choose: ")

Repetition Condition-
controlled

import random

count = 0

while (count < 5):

 count = random.randint (0, 7)

 print (count)

Repetition Condition-
controlled

count = 0

while (count < 5):

 count = count + 1

 print (count)

Repetition Count-
controlled

for num in range (0, 5):

 print (num)

Repetition Count-
controlled

table = [4, 9, 2, 3, 7]

index = 0

while (index < len (table)):

 print (table[index])

 index = index + 1

Iteration Count-
controlled

for num in range (5):

 print (num * 2)

Repetition Count-
controlled

table = ["cat", "dog", "fox"]

for word in table:

 print (word)

Iteration Count-
controlled

table = ["cat", "dog", "fox"]

for index in range (0, len (table)):

 print (table[index])

Iteration Count-
controlled

table = [1, 2 ,3, 4, 5, 6]

for index in range (len (table) - 1, -1, -2):

 print (table[index])

Iteration Count-
controlled

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 20 of 40 Date: January 2023

Python example Is a type of Is an
example of

import random

table = [1, 2 ,3, 4, 5, 6]

stop = random.randint (1, len (table))

for index in range (0, stop):

 print (table[index])

Iteration Count-
controlled

From these examples, it is possible to say that when the Python ‘range()’ function is used to

generate a sequence of numbers, the loop is count-controlled. When that sequence is used to

access a data structure it is iteration. When the sequence is used to count the times around the

loop, it is repetition. This is a distinction of convenience, as from another perspective, the sequence

generated by ‘range()’ is iterated over.

Students should not worry about the subtleties of the distinctions between these terms. If the word

‘iteration’ is stated in an instruction, then students can use a ‘for’ loop to process a data structure. If

the word ‘repetition’ is stated in an instruction, then students may choose whichever construct

(‘while’, ‘for’) is suitable for the problem.

Subprograms
(Specification points: 6.2.1, 6.6.1, 6.6.2, 6.6.3)

A subprogram is a distinct, named block of code, incorporating its own scope, that performs a

specific task, and is called into action from other blocks of code.

The use of subprograms is good programming practice because it breaks program code into smaller

sections, making it easier to read, understand and debug.

Procedures and functions
Subprograms can be either procedures or functions. Although Python does not differentiate

between the two, using the key word ‘def’ to define both, there is a conceptual difference between

them.

This table sets out the difference between a procedure and a function.

Term Definition

Procedure Procedures may or may not take parameters. They do not return a
value to the calling block.

Function Functions may or may not take parameters. They always return a
value to the calling block and are called as part of an expression so
that the return value is assigned to a variable.

Parameters and arguments
In the subprogram definition line, the variables inside the brackets are called parameters. When the

subprogram is called in another block of code, the variables passed in are referred to as arguments.

A useful technique is to name the parameters in a way that identifies them as belonging to the

subprogram. This reduces the chance of confusing them with variables in other parts of the

program. One easy way of doing this is to begin parameter names with the letter ‘p’.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 21 of 40 Date: January 2023

Here is an example of a subprogram definition that takes a parameter beginning with the letter ‘p’.

def processMenuChoice (pChoice):

Students must take care to list the arguments in a call to a subprogram in the same order as the

parameters in its definition.

Using subprograms
Python comes with a library of built-in subprograms that perform common functions. (See the Built-

in subprograms section), but also allows programmers to write their own user-devised subprograms

and import libraries of subprograms (See the Library modules section).

This table shows examples of using user-devised subprograms.

Example Description

studentTable =[

 [152,"Jones",78.45],

 [938,"Black",24.12],

 [454,"Green",32.00]]

def displayStudents ():

 for student in studentTable:

 print (student[2], student[1])

This example is a procedure because

it does not return a result. It also

takes no parameters inside the

brackets on the definition line.

The output from calling this

procedure is:

78.45 Jones

24.12 Black

32.0 Green

def displayOneStudent (pIndex):

 print (studentTable[pIndex][2],

 studentTable[pIndex][1])

This example is a procedure because

it does not return a result. However,

it does take a single parameter. The

parameter is used to index a data

structure.

The output from calling this

procedure, with an argument of 2, is:

32.0 Green

def roll ():

 showing = random.randint (1, 6)

 return (showing)

This example is a function because it

does return a value, in its last line.

An example of a returned value from

calling this function is:

3

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 22 of 40 Date: January 2023

Example Description

def raisePower (pPower):

 value = 2 ** pPower # Calc 2^pPower

 return (value)

This example is a function as it returns

a value, in its last line. It also takes a

single parameter, inside the brackets

on the definition line. The parameter

is used in a calculation.

The returned value from calling this

function, with an argument of 3 is:

8

displayStudents () This is an example of how to call a

procedure with no arguments. The

output is listed above.
myStudent = 2

displayOneStudent (myStudent)

This is an example of a call to a

procedure that takes an argument.

The argument, in this case, is an

integer variable.
print (roll ()) This is an example of a call to a

function that takes no arguments.

The returned value from the function

is immediately passed into the

‘print()’ function.
thePower = raisePower (3)

print (thePower)

This is an example of a call to a

function that takes a single argument.

Global and local variables

The scope of a variable refers to the part of a program in which it exists and can be used. Global

variables are defined at the level of the main program and are accessible from anywhere in the

program.

Local variables are defined inside subprograms. They are only accessible within the subprogram in

which they are defined and cease to exist once that subprogram finishes executing. A local variable

with the same name as a variable declared in the main program or in a different subprogram is a

different variable.

It is good programming practice to minimise the use of global variables and include only those that

are needed at the main program level. Having lots of global variables can lead to conflicts with

naming and make debugging much more difficult.

Variables that are only used to do work inside a subprogram should be defined as local variables

inside that subprogram. Parameters, the placeholders on the definition line for values passed into a

subprogram, are automatically local variables inside that subprogram.

Code example
This example minimises the number of global variables. All variables used by the subprograms are

defined inside the subprogram. It also illustrates how to pass a global variable into a subprogram as

an argument.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 23 of 40 Date: January 2023

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 24 of 40 Date: January 2023

A variable or data structure held in global scope can be accessed and changed from inside a

subprogram.

There is no strict rule about what can be global and what should be passed into a subprogram as an

argument. However, it is good programming practice is to avoid accessing global variables directly

from inside subprograms and – instead – to pass them into the subprogram as arguments.

Global keyword
The Python keyword ‘global’ is used to create global variables from within subprograms. This allows

code, outside a subprogram, to modify a variable created inside the subprogram. This is not good

programming practice as it can cause naming conflicts and make debugging challenging. Students

are advised not to use this facility.

Inputs and outputs
(Specification points: 6.4.1, 6.4.2)

Screen output
The ‘print()’ function is used to display output on the screen.

This table shows examples of using screen output.

Example Description

print (“Hello world”) The output on the screen is:

Hello world

myScore = 83

print (myScore)

The output on the screen is:

83

print (“My score is”, myScore) The output on the screen is:

My score is 83

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 25 of 40 Date: January 2023

Output can be formatted to suit the problem requirements and the user’s needs using string

formatting with positional placeholders and format requirements shown in ‘{}’. This is particularly

useful for presenting columnar and tabular information.

Here are two examples.

Example Description

layout = "{:<6} {:^4.3f}"

print (layout.format ("Hello",

 3.14159))

This example uses placeholders to control the
spacing of output displayed to the screen.

There is another example in the PLS.

The output is:
Hello 3.142

print ("{:.2f}".format (price))

This example uses the string formatting
operator to display a currency value to two
decimal places.

The use of formatting strings using literal string interpolation (f-strings) is not set out in the PLS.

However, some students may want to learn this approach to formatting strings.

Commas versus concatenation
Commas delimit the parameter values passed to the print() function, which adds a space between

each parameter value on output. The use of commas to join strings produces a tuple of strings,

rather than a single string.

Concatenation joins the values together into one string without spaces, before being passed to the

print() function. Python can only concatenate string objects. If the programmer wants to merge a

string with a non-string (an integer or a float), they must use the function ‘str()’ to convert the non-

string to a string.

Non-printable control characters
Non-printable control characters are used to specify how output appears on the screen and in a text

file.

The new line character ‘\n’ moves the cursor down to the beginning of the next line of text. Each

line of a text file is terminated with the ‘\n’.

The tab character ‘\t’ moves the cursor one tab space to the right.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 26 of 40 Date: January 2023

Keyboard input
The ‘input()’ function is used to take input from the user via the keyboard. Remember, that all input

from the keyboard is in strings, so may need to be converted to the data type required by the

program.

This table shows examples of using keyboard input.

Example Description

theName = input ("Enter your name: ") This example accepts a string input

and stores it in the variable
theName.

theGuess = int (input ("Guess: ") This example accepts a string input,

converts it to an integer, then stores

it in the variable theGuess.

height = float (input ("Metres: ") This example accepts a string input,

converts it to a real (decimal)

number, then stores it in the variable
height.

Files
All data stored on disk for this qualification will be stored as comma separated value text files. No

other file formats need to be considered.

File operations include open, close, read, write, and append. It is recommended that files be opened

for reading or writing, not both at the same time. Although it is possible to read from and write to

the same file, it is beyond the scope of the specification.

Students need to be aware of how the write and append operations differ. The former overwrites

any existing content in a file; the latter adds to the end of any existing content.

It is good programming practice to always close files before a program finishes. Sometimes, files

that are left open can be corrupted.

This table shows examples of using files.

Example Description

theFile = open ("Students.txt", "r") This example opens a file for reading

only.

for line in theFile:

 <process the line>

This example shows how to read

each line from the file, using the

variable returned from the ‘open()’

function. The commands indented

under the ‘for…in’ loop will execute

for each line.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 27 of 40 Date: January 2023

Example Description

theFile.close() This example closes a file, using the

variable returned from the ‘open()’

function.

outFile = open ("Students.txt", "w") This example opens a file for writing

only. When a file is opened for

writing, all of its existing content is

destroyed.

for student in studentTable:

 <build an output string>

 outFile.write (<output string>)

This example processes each record

in a data structure, by creating a

string from all the fields, and then

writes the resulting string to the file,

using the variable returned from the

‘open()’ function.

outFile.close() This example closes a file, using the

variable returned from the ‘open()’

function.

Note that reading and writing files using Python’s ‘with open (…) as …’ does not require an explicit

‘<file>.close()’ function call.

Reading from a file
The general approach for reading data from a file is to

• open the file for reading

• read each line in the file

o process the line by removing the line feed and converting field types

o build a record from the individual fields

o append the new record to a two-dimensional data structure

• close the file.

This approach will result in a two-dimensional table of records, i.e. a nested list of lists in Python.

The internal data structure can then be processed in any way required.

Writing to a file
The general approach for writing data to a file is to

• open the file for writing

• process each record in the two-dimensional data structure

o convert each field to a string

o join the field strings with commas, without any white space before or after them,

except the last field, to create an output line

o add a line feed to the output line

o write the output line to the file

• close the file.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 28 of 40 Date: January 2023

This approach will result in a file where each record in the original data structure is on a single line,

with each field separated by a comma. The content of the file is viewable in any text editor.

Code example
This example shows one way that beginner programmers can work with files.

The original file has this content:

Once the file content is read into the program, the content of the memory holding the two-

dimensional data structure looks like this:

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 29 of 40 Date: January 2023

After a new field is added to each record in the data structure, the content of the output file looks

like this:

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 30 of 40 Date: January 2023

The full program is shown in these two images.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 31 of 40 Date: January 2023

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 32 of 40 Date: January 2023

Supported subprograms
(Specification point: 6.6.1)

Built-in subprograms
A built-in subprogram is a procedure or function that is always available and does not need to be

written or imported before it can be used.

This table shows examples of using the built-in subprograms.

Example Description

character = chr (65)

print (character)

This example returns the string which matches the
Unicode value of 65.

The output is:
A

firstNumber = 7

secondNumber = 21

print(bool(firstNumber ==

secondNumber))

This example returns False as firstNumber is not

equal to secondNumber.

name = “Manjit”

print(bool(name))

This example returns True as name is a non-empty

string.

newList = []

print(bool(newList))

This example returns False as newList is an empty

list.

decimalNumber = float (input (

print (decimalNumber)

This example converts the string input
decimalNumber into a real.

name = input ("Name: ")

print (name)

This example displays the prompt to the screen and
waits for the user to type in characters followed by a
new line.

The console session looks like this:
Name: Shaun

Shaun
integerNumber = int (input(

print (integerNumber)

This example converts the string input into an
integer.

word = "Garage"

length = len (word)

print (length)

This example returns the length of the word ‘Garage’.

The output is:
6

string = ord ("K")

print (string)

This example returns the integer equivalent to the
Unicode single character string ‘K’.

The output is:
75

print (“Hello”) This example prints ‘Hello’ to the display.

The output is:
Hello

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 33 of 40 Date: January 2023

Example Description

for num in range (2):

 print (num)

This example prints the numbers from 0 up to, but
not including 2, incrementing 1 each time.

The output is:
0

1
for num in range (10, 13):

 print (num)

This example prints the numbers from 10 up to, but
not including 13, incrementing 1 each time.

The output is:
10

11

12
for num in range (10, 0, -2):

 print (num)

This example prints the numbers from 10 down to,
but not including 0, decreasing by 2 each time.

The output is:
10

8

6

4

2
total = 62.7259

cost = round (total, 2)

print (cost)

This example rounds the variable ‘total’ to two
decimal places and stores the result in the variable
‘cost’.

The output is:
62.73

number = 66

stringNumber = str (number)

print (stringNumber + " is

stored as a string.")

Python can only concatenate string objects. So, if the
programmer wants to merge a string with a non-
string (an integer or a float), they must use the
function ‘str()’ to convert the non-string to a string.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 34 of 40 Date: January 2023

List subprograms
This table shows examples of using the list subprograms.

Example Description

table = [1, 2, 3, 4]

table.append (5)

print (table)

This example appends an item to an existing list.

The output is:
[1, 2, 3, 4, 5]

table = [10, 9, 8, 7, 6]

del table[1]

print (table)

This example deletes the item at index 1.

The output is:
[10, 8, 7, 6]

table = [1, 2, 4, 5]

table.insert (2, 3)

print (table)

This example inserts a new item, the number 3, at index
position 2.

The output is:
[1, 2, 3, 4, 5]

table_one = list ()

print (table_one)

table_two = []

print (table_two)

This example shows two ways to create an empty list.
Once created the append subprogram can be used to put
items into the list.

The output is:
[]

[]

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 35 of 40 Date: January 2023

String subprograms
This table shows examples of using the string subprograms.

Example Description

str_one = "hello"

length = len (str_one)

print (length)

This example finds the length of a string.

The output is:
5

str_one = "hello"

where = str_one.find ("ell")

print (where)

This example finds the start of the substring, inside
the original string. It will return -1, if the substring
is not there.

The output is:
1

str_one = "hello"

where = str_one.index ("o")

print (where)

This example finds the starting index of the
substring, inside the original string. It will report
an error if the substring is not there.

The output is:
4

status = str_one.isalpha ()

print (status)

This example checks to see if the string is all
alphabetic characters.

The output is:
True

str_two = "123XYZ"

status = str_two.isalnum ()

print (status)

This example checks to see if the string is all
alphabetic and numeric characters.

The output is:
True

str_three = "789"

status = str_three.isdigit ()

print (status)

This example check to see if the string is all digits.

The output is:
True

str_one = "Hello world"

str_two = "Sun"

str_three = str_one.replace (

 "world", str_two)

print (str_three)

This example replaces a substring in the original
string, with a new substring.

The output is:
Hello Sun

str_one = "cat,dog,fox"

str_list = str_one.split (",")

print (str_list)

This example splits a string into a list, based on the
character supplied, in this case a ‘,’.

The output is:
['cat', 'dog', 'fox']

str_one = "*ABC**"

str_two = str_one.strip ("*")

print (str_two)

This example removes all occurrences of a
character from the front and back of the original
string.

The output is:
ABC

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 36 of 40 Date: January 2023

Example Description

str_one = "abc"

str_two = str_one.upper ()

print (str_two)

This example converts the original string to all
uppercase.

The output is:
ABC

str_one = "XYZ"

str_two = str_one.lower ()

print (str_two)

This example converts the original string to all
lowercase.

The output is:
xyz

str_one = "ABCxyz"

status = str_one.isupper ()

print (status)

This example checks to see if a string is all
uppercase characters.

The output is:
False

str_one = "abcxyz"

status = str_one.islower ()

print (status)

This example checks to see if a string is all
lowercase characters.

The output is:
True

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 37 of 40 Date: January 2023

Library modules
The PLS specifies a limited set of library modules and an even smaller set of actual subprograms

found in them that students are expected to be familiar with.

This table shows how to import a library module.

Statement Example Description

import import turtle This example imports the turtle
graphics library module.

import from math import pi

This example imports the constant
Pi from the math library.

When referring to an item from an imported library, the name of the library must be included, i.e.

<libraryName>.<itemName>.

Random library module
This table shows examples of using the random library module subprograms.

Example Description

import random

num = random.randint (1, 10)

print (num)

This example shows how to generate a random whole
number between two bounds, inclusive.

The output is:
8

import random

decimal = random.random ()

print (decimal)

This example shows how to generate a random
decimal number, between 0 and 1.

The output is:
0.9754469153477409

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 38 of 40 Date: January 2023

Math library module
This table shows examples of using the math library module subprograms and constant.

Example Description

import math

num = 8.752

result = math.ceil (num)

print (result)

This example shows that the ‘math.ceil()’ subprogram
returns the nearest integer not less than the original.

The output is:
9

import math

num = 8.752

result = math.floor (num)

print (result)

The ‘math.floor()’ subprogram returns nearest integer
not greater than the original.

The output is:
8

import math

num = 25

result = math.sqrt (num)

print (result)

This is an example of the square root subprogram.

The output is:
5.0

import math

print (math.pi)

Pi is a constant, not a subprogram.

The pi value is given to fifteen decimal places.
The output is:
3.141592653589793

When performing a mathematical calculation using pi,
it’s best practice to use the pi value given by the math
module rather than hard coding the value.

Time library module
The ‘time.sleep()’ function suspends program execution for a given number of seconds, after which

executions resumes at the next line of the program.

This table shows an example of using the time library module subprogram.

Example Description

import time

print ("Sleeping ...")

time.sleep (5)

print ("Awake")

This example prints the sleeping message, waits 5
seconds, then prints the awake message.

The output is:
Sleeping ...

Awake

Turtle graphics library module
Examples of all the turtle graphics library module subprograms can be found online in the online

Python documentation. In addition, there are many online tutorials that will introduce the

functionality of turtle graphics.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 39 of 40 Date: January 2023

Console Session
A console session is the window or command line where the user interacts with a program. It is the

default window that displays the output from print () and echoes the keys typed from the

keyboard. It will appear differently in different development tools.

Functionalities not in the PLS
Although the Programming Language Subset is based on an existing high-level programming

language (Python 3), students do not need to understand or be able to use any features not

expressly set out in the PLS document. Some commonly used features of Python are not included in

the PLS. Therefore, students are encouraged to design and implement code without them.

Flow control statements
Although some languages use flow control statements such as goto, break, continue, pass, or exit,

these are not supported in the PLS. Using these statements can make code difficult to read and

significantly more difficult to debug. Introducing one of these statements, which may appear to fix

one bug, can introduce incorrect behaviours in other areas. If beginner programmers believe they

need to use them, then they are advised to reconsider the design of their repetition, iteration, or

selection blocks.

Break
Consider this very simple program that uses an infinite loop and the break statement.

It can be rewritten, providing the same logic, much more clearly. In the revised version, the test at

the top of the loop clearly identifies under what condition the loop should terminate.

Another advantage of restricting the use of the break statement is transferability to other

programming languages. Using the later logic works in most programming languages. Therefore, no

additional learning of constructs is required to use another language to implement the original logic.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Computer Science – Good Programming Practice Guide
Author: Assessment Associate Version 1.2
Approver: Product Manager Page 40 of 40 Date: January 2023

Exit
Consider this very simple program that uses an exit statement.

The user types in numbers with 0 indicating termination. Using the exit statement means the code

on line 34 is never executed. In this case, it is only a print statement, but it could be code that should

have written data to a file.

Programs should have only a single termination point and that should be when the last instruction in

the sequence of instructions is executed. Usually, this means the last instruction in the file.

This is a revision of the logic that behaves in a more predictable way.

Exception handling
The use of try/except for exception handling is not set out in the PLS. However, some students may

want to learn this approach to handling some types of errors.

