
S67286A
Turn over

Instructions

•	Answer all the questions on your computer.

•	Save new or amended code using the file name provided and place it in the
‘COMPLETED CODING’ folder.

•	You must not use the internet at any time during the examination.

Information

•	The ‘STUDENT CODING’ folder in your user area includes all the code and
data files you need.

•	The total mark for this paper is 75.

•	The marks for each question are shown in brackets.

Advice

•	Read each question carefully before you start to answer it.

•	Save your work regularly.

•	Check your answers and work if you have time at the end.

You must have:
• �a computer workstation with appropriate programming language code editing software and

tools, including an IDE that you are familiar with which shows line numbers
• �a ‘STUDENT CODING’ folder containing code and data files
• �printed and electronic copies of the Programming Language Subset (PLS) document.

Computer Science
Paper 2: Application of Computational Thinking

Paper Reference 1CP2/02Time: 2 hours

Sample assessment material for first teaching
September 2020

Pearson Edexcel Level 1/Level 2 GCSE (9–1)

S67286A
©2020 Pearson Education Ltd.

1/1/1/1

2
S67286A

Answer ALL questions.

Suggested time: 10 minutes

1	 A program simulates the roll of a dice. The program uses a random number generator
to create a random integer, between 1 and 6, to represent the roll.

	
Open file Q01.

	 Amend the code to add or complete lines to:

•	 import the random library

•	 create one variable

•	 create one constant

•	 assign the result of a library call to a variable

•	 display a message and the contents of a variable on the screen.

	
Do not add any additional functionality.

	 Save your amended code file as Q01FINISHED.py

(Total for Question 1 = 7 marks)

3

Turn over
S67286A

Suggested time: 20 minutes

2	 A programmer has started to write a program, but it does not work correctly.
The program should ask the user, “Would you like me to sing?”. The user then
responds ‘y’ or ‘n’. If the user types ‘y’, then the computer displays the lines of a song.

	
Open file Q02.

	
Amend the code to:

•	 fix the syntax error on line 13

•	 fix the syntax error on line 15

•	 fix the syntax error on line 17

•	 change the identifier x to a more meaningful name

•	 display a suitable question for the user

•	 accept the user’s input of ‘y’ or ‘n’ (no validation is required)

•	 add a comment to explain the effect of the range function’s last parameter,
set to −1

•	 add two uses of white space to aid readability.

	
Do not add any additional functionality.

	 Save your amended code file as Q02FINISHED.py

(Total for Question 2 = 10 marks)

4
S67286A

Suggested time: 20 minutes

3	 A program is needed that must meet the following requirements:

•	 accept only numbers from 1 to 20, inclusive

•	 print ‘invalid input’ if the input is outside the permitted range. You can assume
only numbers will be entered

•	 print the input number followed by ‘is even’, if the number is even

•	 print the input number followed by ‘is odd’, if the number is odd.

	
Open file Q03.

	 Amend the code to:

•	 fix the runtime error caused by inputting a valid number such as 4 (no other
validation is required)

•	 fix the logic errors that cause incorrect or no outputs for acceptable numbers
from 1 to 20, inclusive

•	 fix the logic error that causes the program to execute, even if a number outside
the permitted range is entered

•	 make all output messages match the requirements listed above.

	
Do not add any additional functionality.

	 Save your amended code file as Q03FINISHED.py

(Total for Question 3 = 13 marks)

5
S67286A

Turn over

Suggested time: 20 minutes

4	 A program takes a year group as input and outputs the stage of education
the year group belongs to.

	 The program loops continually until the user inputs 0 to stop the program.

Input Output

0 Exits program

1, 2, 3, 4, 5, 6 Primary

7, 8, 9, 10, 11 Secondary

12, 13 College

	
The lines of code in the program are mixed up.

	
Open file Q04.

	 Amend the code to make the program work and produce the correct output.
You will need to rearrange the lines.

	 Use comments, white space, indentation and layout to make the program easier
to read and understand.

	 Do not change the functionality of the given lines of code.

	 Do not add any additional functionality.

	 Save your amended code file as Q04FINISHED.py

(Total for Question 4 = 15 marks)

6
S67286A

Suggested time: 25 minutes

5	 Students are collecting data about the amount of water needed to fill different sized
paper cones. Their measurements are compared to a calculated volume.

	 The formula to calculate the volume of a cone is:

	 V =
1
3 πr2h

•	 V is volume

•	 π is the constant Pi

•	 r is the radius of the base of the cone

•	 h is the height of the cone.

	
A program and subprogram have been started to carry out the calculation.

	
Open file Q05.

	
Amend the program and subprogram to meet the following requirements:

•	 the subprogram must work for any values of radius and height passed as
parameters. You can assume values passed to the subprogram will always be
numbers. No validation is required

•	 the subprogram must calculate the volume based on the input parameters

•	 the main program must print the volume, formatted to show three decimal places
(e.g. 16.135).

	
Do not add any additional functionality.

	 Save your amended code as Q05FINISHED.py

(Total for Question 5 = 15 marks)

7
S67286A

Suggested time: 25 minutes

6	 A program is needed to authenticate system logins consisting of a login name and
a four-digit passcode.

	 These items for current users are stored in a two-dimensional list with 19 records.
The list contains user number, last name, first name, login name and passcode.

	 The list is sorted by login name. All users have passcodes that are integers between
1000 and 9999.

Turn over

8
S67286A

	 Open file Q06.

	
Write a program to meet the following requirements:

	 Inputs

•	 Prompt for and accept a login name, no validation required

•	 Prompt for and accept a four-digit passcode. You can assume only numbers
will be entered

•	 Ensure the passcode is between 1000 and 9999, inclusive

	 Process

•	 Work with any number of users in the list

•	 Use a linear search to find the record with the correct combination of login name
and passcode

•	 Stop searching when the location of where the record should have been found is
passed. For example:

	– if looking for ‘Jam118’ and find ‘Joy116’, then the record is not in the list, so the
search can stop

•	 Does not need to loop continuously

	 Outputs

•	 Display a welcome message, including the user’s first and last names, if the
login name and passcode are found

•	 Display an invalid input message, if the login name and passcode are not found.

	
Do not add any additional functionality.

	 Use comments, white space and layout to make the program easier to read and
understand.

	 Save your amended code as Q06FINISHED.py

(Total for Question 6 = 15 marks)

TOTAL FOR PAPER = 75 MARKS

Paper 2 mark scheme

Please note the following regarding the application of this mark scheme:

• Pearson have developed the Programming Language Subset (PLS) document to specify

which parts of Python 3 students are required to learn in order to access the assessments.

Pearson will not go beyond the scope of the PLS in its assessments. However, if students

use alternative valid techniques to answer questions in the assessments, they will also be

credited.

• At the time of publication, this qualification uses Python 3 as the underlying programming

paradigm for the assessment and teaching and learning of the qualification. Python 2 will

not be supported and should not be used in the delivery of this qualification. If at some

time in the future a Python 4 is released, we will work closely with our centres before

deciding whether to remain with Python 3 or to move to the newer version of the language.

• Google are developing some Google Python library equivalents (gPython) that might be

required for Chrome-based schools. Centres that avail of these Google library functions will

also be credited.

• The AO breakdown is shown for paper 2 to give greater clarity to the skills demonstrated in

each marking point. This is necessary for this practical paper as the majority of the

marking points are interlinked in a way that is more complex than in a traditional written

paper.

Question

number

Answer Additional guidance Mark

1 The following assessment objectives are

assessed:

• AO2.1b

• AO3.2b

Award marks as shown.

• import random (1)

• roll = (1) <integer> 0 (1)

• SIDES = (1) <integer> 6 (1)

• roll = random.randint(1, SIDES) (1)

• print string (1) and roll (1)

• Output of print

statements may

appear on

separate lines

• Items in ‘< >’ do

not form part of

the response, but

provide

clarification

(7)

Question

number

Answer Additional guidance Mark

2 The following assessment objectives are

assessed:

• AO2.1a

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

• Add ‘:’ at end of the line:

if (choice == 'y'): (1)

• Add missing ‘)’ before ‘:’ in the line:
for num in range(5, -1, -1): (1)

• Add missing “ before end bracket in the line:

print("Goodbye") (1)

• Printing a suitable question for the user based

on context, i.e. “Do you want me to sing?” (1)

• Accept user input of ‘y’ and ‘n’ (1)

• Changing the variable name ‘x’ to a more

meaningful name (1) such as ‘choice’

throughout the code

• Addition of comment indicating reverse

stepping (1)

• One mark each for insertion of white space to

aid readability, up to a maximum of two

marks (2)

• Correct output for ‘y’ (count down 5 to 0 and

then Goodbye) and correct output for ‘n’

(Goodbye) (1)

 (10)

Question

number

Answer Additional guidance Mark

3 The following assessment objectives are

assessed:

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

• Fixing runtime error by coercion of input to

‘int’ (1)

• Fixing errors by using modulus (1)

• Use of at least one appropriate ‘if’ statement

in the solution (1)

• Adding validation for input numbers using:

o relational operator (<=20) (1)

o relational operator (>=1) (1)

o correct Boolean operator (and/or) (1)

• Corrects output message for even numbers

and odd numbers (1)

Levels-based mark scheme to a maximum of 6,

from:

• Solution design (3)

• Functionality (3)

• Fixing error with

odd numbers can

be done in several

different ways (see

examples)

• Award any

accurate tests for

validation range

Considerations:

• 6.1.6 Using test

data to evaluate a

program, such as

extreme data [a

character], normal

data [1...20] and

boundary data [0,

21]

• 6.2.2 Appropriate

use of sequencing,

selection and

repetition

• 6.1.1 Use analysis

to solve problems

• 6.1.6 Use logical

reasoning to

evaluate efficiency

(i.e. reduce tests)

(13)

Solution design (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to

decompose the problem.

• Some of the component parts of

the problem can be seen in the

solution, although this will not be

complete.

• Some parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures, appropriate to the

problem, is limited.

• The choice of programming

constructs, appropriate to the

problem, is limited.

• There has been some attempt to

decompose the problem.

• Most of the component parts of the

problem can be seen in the

solution.

• Most parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures is mostly appropriate.

• The choice of programming

constructs is mostly appropriate to

the problem.

• The problem has been decomposed

clearly into component parts.

• The component parts of the

problem can be seen clearly in the

solution.

• The logic is clear and appropriate

to the problem.

• The choice of variables and data

structures is appropriate to the

problem.

• The choice of programming

constructs is accurate and

appropriate to the problem.

3

Functionality (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

Question

number

Answer Additional guidance Mark

4 The following assessment objectives are

assessed:

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

• Use of comments, white space and layout to

aid readability (1)

• Initial input done outside loop, to handle first

entry is ‘0’ (1)

• Repetition (while) used as outermost loop (1)

• ‘elif (year > 13)’ is placed later in the logic

than ‘if (year < 1)’ (1)

• ‘elif (year < 12)’ is placed later in the logic

than ‘elif (year < 7)’ (1)

• Accepting next round of input done inside loop

(1)

• Validation messages match validation tests:

o Year too small (1)

o Year too big (1)

• Institution messages match tests:

o Primary (1)

o Secondary (1)

o College (1)

• Correct outputs for each set of test data:

o 0 = exiting (1)

o 1 and 6 = Primary (1)

o 7 and 11 = Secondary (1)

o 12 = College (1)

 (15)

Question

number

Answer Additional guidance Mark

5 The following assessment objectives are

assessed:

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

• Import of math library (1)

• Two parameters in first line of subprogram

definition (1) with names ‘pRadius’ and

‘pHeight’, in any order (1)

• Accurate translation of the formula to code

(1)

• Use of math.pi constant in formula

translation (1)

• Two passed-in parameters (‘pRadius’ and

‘pHeight’) used in the calculation (1)

• Assignment of calculation to ‘theVolume’ (1)

• One return statement with ‘theVolume’ in

brackets (1)

• Parameters in call to subprogram are

‘baseRadius’ and ‘coneHeight’, in any order

(1)

• Order of parameters matches order in first

line of subprogram definition (1)

• Capture of returned value in main program,

in ‘coneVolume’ (1)

• Format volume to three decimal places for

outputting only (1)

Levels-based mark scheme to a maximum of 3,

from:

• Functionality (3)

Considerations:

• 6.1.1 Be able to

use

decomposition to

analyse

requirements

• 6.1.2 Be able to

write in a high-

level language

• 6.6.1 Be able to

perform

generalisations

• Default printing

will drop trailing

0s, even if

rounded, so string

formatting should

be used

(15)

Functionality (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

Question

number

Answer Additional guidance Mark

6 The following assessment objectives are

assessed:

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

Points-based mark scheme:

Inputs

• Accepts and responds to user input (1)

• Validation with range check using relational

operators >=1000, <=9999 (1)

Process

• Use of library subprograms len() (1) to

work with any number of users in the list

• Use of Boolean (1) to stop loop when found

or passed over

• Use of 2-dimensional indexing (1) in user

list

Outputs

• Display of appropriate messages (1)

Levels-based mark scheme to a maximum of

9, from:

• Solution design (3)

• Good programming practices (3)

• Functionality (3)

Considerations:

• 6.1.1 Use

decomposition and

abstraction to

analyse a problem

(inputs, outputs,

processing,

initialisation,

design)

• 6.6.1 Decompose

into subproblems

• 6.1.2 Write in a

high-level language

• 6.2.2 Use

sequencing and

selection

components

(15)

Solution design (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to

decompose the problem.

• Some of the component parts of

the problem can be seen in the

solution, although this will not be

complete.

• Some parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures, appropriate to the

problem, is limited.

• The choice of programming

constructs, appropriate to the

problem, is limited.

• There has been some attempt to

decompose the problem.

• Most of the component parts of the

problem can be seen in the

solution.

• Most parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures is mostly appropriate.

• The choice of programming

constructs is mostly appropriate to

the problem.

• The problem has been decomposed

clearly into component parts.

• The component parts of the

problem can be seen clearly in the

solution.

• The logic is clear and appropriate

to the problem.

• The choice of variables and data

structures is appropriate to the

problem.

• The choice of programming

constructs is accurate and

appropriate to the problem.

3

Good programming practices (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to lay

out the code into identifiable

sections to aid readability.

• Some use of meaningful variable

names.

• Limited or excessive commenting.

• Parts of the code are clear, with

limited use of appropriate spacing

and indentation.

• There has been some attempt to

lay out the code to aid readability,

although sections may still be

mixed.

• Uses mostly meaningful variable

names.

• Some use of appropriate

commenting, although may be

excessive.

• Code is mostly clear, with some use

of appropriate white space to aid

readability.

• Layout of code is effective in

separating sections, e.g. putting all

variables together, putting all

subprograms together as

appropriate.

• Meaningful variable names and

subprogram interfaces are used

where appropriate.

• Effective commenting is used to

explain logic of code blocks.

• Code is clear, with good use of

white space to aid readability.

3

Functionality (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

	67286 QP GCSE Computer Science 1PC2 02 260220
	5. SAMs GCSE L1-L2 Computer Science 2020 P2 MS

