
Turn over

W79752A

Pearson Edexcel Level 1/Level 2 GCSE (9–1)

1CP2/02Paper
reference

Computer Science
PAPER 2: Application of Computational Thinking
Programming Language Subset
Version 6

PLS Booklet
You do not need any other materials.

W79752A
©2025 Pearson Education Ltd.
1/1/1/1/1

2 W79752A

Contents

Introduction... 4

Comments.. 5

Identifiers.. 5

Data types and conversion... 5

	 Primitive data types... 5

	 Conversion.. 5

	 Constants... 5

	 Combining declaration and initialisation.. 5

	 Structured data types .. 6

	 Dimensions... 6

Operators.. 7

	 Arithmetic operators... 7

	 Relational operators ... 7

	 Logical/Boolean operators.. 7

Programming constructs ... 8

	 Assignment... 8

	 Sequence... 8

	 Blocking ... 8

	 Selection.. 8

	 Repetition.. 8

	 Iteration.. 8

	 Subprograms.. 9

Inputs and outputs.. 9

	 Screen and keyboard ... 9

	 Files.. 9

Supported subprograms...10

	 Built-in subprograms...10

	 List subprograms..11

	 String subprograms...12

		 Formatting strings ...13

3

Turn over

W79752A

Library modules ...14

	 Random library module...14

	 Math library module..14

	 Time library module..14

	 Turtle graphics library module..15

		 Tips for using turtle..15

		 Turtle window and drawing canvas...15

		 Turtle creation, visibility and movement ..16

		 Turtle positioning and direction ...16

		 Turtle filling shapes..16

		 Turtle controlling the pen..17

		 Turtle circles..17

		 Turtle colours..17

Console session ...17

Code style...17

Line continuation...18

Carriage return and line feed...18

4 W79752A

Introduction

The Programming Language Subset (PLS) is a document that specifies which parts of
Python 3 are required in order that the assessments can be undertaken with confidence.
Students familiar with everything in this document will be able to access all parts of the
Paper 2 assessment. This does not stop a teacher/student from going beyond the scope
of the PLS into techniques and approaches that they may consider to be more efficient
or engaging.

Pearson will not go beyond the scope of the PLS when setting assessment tasks. Any
student successfully using more esoteric or complex constructs or approaches not
included in this document will still be awarded marks in Paper 2 if the solution is valid.

5

Turn over

W79752A

The pair of <> symbols indicates where expressions or values need to be supplied. They
are not part of the PLS.

Comments

Anything on a line after the character # is considered a comment.

Identifiers

Identifiers are any sequence of letters, digits and underscores, starting with a letter.

Both upper and lower case are supported.

Data types and conversion

Primitive data types

Variables may be explicitly assigned a data type during declaration.

Variables may be implicitly assigned a data type during initialisation.

Supported data types are:

Data type PLS

integer int

real float

Boolean bool

character str

Conversion

Conversion is used to transform the data types of the contents of a variable using int(),
str(), float(), bool() or list(). Conversion between any allowable types is permitted.

Constants

Constants are conventionally named in all uppercase characters.

Combining declaration and initialisation

The data type of a variable is implied when a variable is assigned a value.

6 W79752A

Structured data types

A structured data type is a sequence of items, which themselves are typed. Sequences
start with an index of zero.

Data type Explanation PLS

string A sequence of characters str

array A sequence of items with the same (homogeneous) data type list

record A sequence of items, usually of mixed (heterogenous) data types list

Dimensions

The number of dimensions supported by the PLS is two.

<structure>[<first dimension>] Accesses an item in a one-dimensional
structure

<structure>[<first dimension>]
[<second dimension>]

Accesses an item in a two-dimensional
structure

The PLS does not support ragged data structures. Therefore, in a list of records, each
record will have the same number of fields.

7

Turn over

W79752A

Operators

Arithmetic operators

Arithmetic operator Meaning

/ division

* multiplication

** exponentiation

+ addition

– subtraction

// integer division

% modulus

Relational operators

Relational operator Meaning

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Logical/Boolean operators

Operator Meaning

and both sides of the test must be true to return true

or either side of the test must be true to return true

not inverts

8 W79752A

Programming constructs

Assignment

Assignment is used to set or change the value of a variable.

<variable identifier> = <value>

<variable identifier> = <expression>

Sequence

Every instruction comes one after the other, from the top of the file to the bottom of the file.

Blocking

Blocking of code segments is indicated by indentation and subprogram calls. These
determine the scope and extent of variables they declare.

Selection

if <expression>:
	 <command>

If <expression> is true, then <command> is executed.

if <expression>:
	 <command>
else:
	 <command>

If <expression> is true, then first <command> is
executed, otherwise second <command> is executed.

if <expression>:
	 <command>
elif <expression>:
	 <command>
else:
	 <command>

If <expression> is true, then first <command> is
executed, otherwise the second <expression> test is
checked. If true, then second <command> is executed,
otherwise third <command> is executed.

Supports multiple instances of ‘elif’.

The ‘else’ is optional with the ‘elif’.

Repetition

while <condition>:
	 <command>

Pre-conditioned loop. This executes <command> while
<condition> is true.

Iteration

for <id> in <structure>:
	 <command>

Executes <command> for each element of
<structure>, in one dimension.

for <id> in range (<start>, <stop>):
	 <command>

Count-controlled loop. Executes <command> a
fixed number of times, based on the numbers
generated by the range function. <stop> is
required. <start> is optional.

for �<id> in range (<start>, <stop>,
<step>):

	 <command>

Same as above, except that <step> influences
the numbers generated by the range function.
<stop> is required. <start> and <step> are
optional.

9

Turn over

W79752A

Subprograms

def <procname> ():
	 <command>

A procedure with no parameters

def <procname> (<paramA>, <paramB>):
	 <command>

A procedure with parameters

def <funcname> ():
	 <command>
	 return (<value>)

A function with no parameters

def <funcname> (<paramA>, <paramB>):
	 <command>
	 return (<value>)

A function with parameters

Inputs and outputs

Screen and keyboard

print (<item>) Displays <item> on the screen

input (<prompt>) Displays <prompt> on the screen and
returns the line typed in

Files

The PLS supports manipulation of comma separated value text files.

File operations include open, close, read, write and append.

<fileid> = open (<filename>, "r") Opens file for reading

for <line> in <fileid>: Reads every line, one at a time

<alist> = <fileid>.readlines () Returns a list where each item is a line
from the file

<aline> = <fileid>.readline () Returns a line from a file. Returns an empty
string on the end of the file

<fileid> = open (<filename>, "w") Opens a file for writing

<fileid> = open (<filename>, "a") Opens a file for appending

<fileid>.writelines (<structure>) Writes <structure> to a file. <structure> is
a list of strings

<fileid>.write (<aString>) Writes a single string to a file

<fileid>.close () Closes file

10 W79752A

Supported subprograms

Built-in subprograms

The PLS supports these built-in subprograms.

Subprogram Description

bool (<item>) Returns <item> converted to the equivalent
Boolean value

chr (<integer>) Returns the string which matches the Unicode
value of <integer>. The first 128 characters of
Unicode are equivalent to ASCII.

float (<item>) Returns <item> converted to the equivalent
real value

input (<prompt>) Displays <prompt> on the screen and returns
the line typed in

int (<item>) Returns <item> converted to the equivalent
integer value

len (<object>) Returns the length of the <object>, such as a
string, one-dimensional or two-dimensional
data structure

ord (<char>) Returns the integer equivalent to the Unicode
string of the single character <char>. The first
128 characters of Unicode are equivalent to
ASCII.

print (<item>) Displays <item> on the screen

range (<start>, <stop>, <step>) Generates a list of numbers using <step>,
beginning with <start> and up to, but not
including, <stop>. A negative value for <step>
goes backwards. <stop> is required. <start>
and <step> are optional. The default value for
<start> is zero. The default value for <step> is
positive one.

round (<x>, <n>) Rounds <x> to the number of <n> digits after
the decimal (uses the 0.5 rule). The <n> is
optional. If omitted, the function returns the
nearest integer to <x>.

str (<item>) Returns <item> converted to the equivalent
string value

11

Turn over

W79752A

List subprograms

The PLS supports these list subprograms.

Subprogram Description

<list>.append (<item>) Adds <item> to the end of the list

del <list> [<index>] Removes the item at <index> from list

<list>.insert (<index>, <item>) Inserts <item> just before an existing one
at <index>

<aList> = list ()
<aList> = []

Two methods of creating a list structure.
Both are empty.

12 W79752A

String subprograms

The PLS supports these string subprograms.

Subprogram Description

len (<string>) Returns the length of <string>

<string>.find (<substring>,
<start>, <end>)

Returns the location of the first instance of <substring>
in the original <string>, reading from left to right.
<start> is the index to begin the find. The default is
zero. <end> is the index to stop the find.
The default is the end <string>. Returns -1, if not found.

<string>.index (<substring>,
<start>, <end>)

Returns the location of the first instance of <substring>
found in the original <string> as read from left to
right. Raises an exception if not found. <substring> is
required. <start> and <end> are optional. The default
value for <start> is zero.
The default value for <end> is the end of <string>.

<string>.isalpha () Returns True, if all characters are alphabetic A–Z

<string>.isalnum () Returns True, if all characters are alphabetic A–Z or
digits 0–9

<string>.isdigit () Returns True, if all characters are digits 0–9, exponents
are digits

<string>.replace (<s1>, <s2>) Returns original <string> with all occurrences of <s1>
replaced with <s2>

<string>.split (<char>) Returns a list of all substrings in original <string>, using
<char> as the separator

<string>.strip (<char>) Returns original <string> with all occurrences of
<char> removed from the front and back

<string>.upper () Returns original <string> in uppercase

<string>.lower () Returns original <string> in lowercase

<string>.isupper () Returns True, if all characters in <string> are uppercase

<string>.islower () Returns True, if all characters in <string> are lowercase

<string>.format (<values>) Formats <values> and puts them into <string>. The
content of <string> is described by symbols and
placeholders.

13

Turn over

W79752A

Formatting strings

Output can be customised to suit the problem requirements and the user’s needs by
forming string output.

<string>.format () can be used with positional placeholders and format descriptors.

Placeholders take the form:

{:<align><sign><width><.precision><type>}

Placeholder Option Description

align < Left aligned. Default for most items, like text.

> Right aligned. Default for numbers.

^ Centre aligned.

sign + Use a sign for both positive and negative numbers.

− Use a sign only for negative numbers. Default for negative
numbers.

space Use leading spaces for positive numbers and a minus sign for
negative numbers.

width whole number The total width of the field.

precision whole number The number of digits after the decimal.

type s String. Default for strings, if not supplied.

d Numbers in base 10 (denary). Default for integers, if not
supplied.

f Fixed-point notation. Formats a number with exactly the
number of digits to the right of the decimal given by precision

Here is an example:

layout = "{:>10} {:^5d} {:7.4f}"
print (layout.format (“Fred”, 358, 3.14159))

The * operator can be used to generate a line of repeated characters, for example: “=” * 10 will
generate “==========”.

Concatenation of strings is done using the + operator.

String slicing is supported. myName[0:2] gives the first two characters in the variable
myName.

14 W79752A

Library modules

The functionality of a library module can only be accessed once the library module is
imported into the program code.

Statement Description

import <library> Imports the <library> module into the current program

Random library module

The PLS supports these random library module subprograms.

Subprogram Description

random.randint (<a>,) Returns a random integer X so that <a> <= X <=

random.random () Returns a float number in the range of 0.0 and 1.0

Math library module

The PLS supports these math library module subprograms and constant.

Subprogram or constant Description

math.ceil (<x>) Returns the smallest integer greater than or equal to <x>

math.floor (<x>) Returns the largest integer less than or equal to <x>

math.sqrt (<x>) Returns the square root of <x>

math.pi The constant Pi (Π)

Time library module

The PLS supports this time library module subprogram.

Subprogram Description

time.sleep (<sec>) The current process is suspended for the given number of
seconds, then resumes at the next line of the program

15

Turn over

W79752A

Turtle graphics library module

Tips for using turtle

The default mode for the PLS turtle is “standard”. This means that when a turtle is
created, it initially points to the right (east) and angles are counterclockwise. You can
change modes using turtle.mode ().

The turtle window is one size and the turtle drawing canvas (inside the window) can be
a different size. To make the turtle window bigger, a screen needs to be created and set
up. Here is an example:

WIDTH = 800
HEIGHT = 400
screen = turtle.Screen ()
screen.setup (WIDTH, HEIGHT)

To make the drawing canvas bigger use <turtle>.screensize ().

In some development environments, the turtle window will close as soon as the program
completes. There are two ways to keep it open:

•	 Add turtle.done () as the last line in the code file. This will keep the window open
until closed with the exit cross in the upper right-hand corner. It also allows scrollbars
on the window.

•	 Add a line asking for keyboard input, such as input (), as the last line. This will
keep the window open until the user presses a key in the console session. The scrollbars
will not work.

Turtle window and drawing canvas

The PLS supports these turtle library module subprograms to control the window and
drawing canvas. Notice that these subprograms do not use the name of the turtle you
create to the left of the dot, but the library name, “turtle” or a <window> variable.

Subprogram Description

<window>.setup (<width>, <height>) Sets the size of the turtle window to <width>
× <height> in pixels. Requires use of
turtle.Screen () to create <window> first.

turtle.done () Use as the last line of the file to keep the turtle
window open until it is closed using the exit
cross in the upper right-hand corner of the
window

turtle.mode (<type>) <type> is one of the strings “standard” or “logo”.
A turtle in standard mode, initially points to the
right (east) and angles are counterclockwise. A
turtle in logo mode, initially points up (north)
and angles are clockwise.

turtle.Screen () Returns a variable to address the turtle
window. Use with <window>.setup ().

turtle.screensize (<width>, <height>) Makes the scrollable drawing canvas size equal
to <width> × <height> in pixels. Note, use
with turtle.done () so scrollbars will be active.

16 W79752A

Turtle creation, visibility and movement

The PLS supports these turtle library module subprograms to control the turtle creation,
visibility and movement.

Subprogram Description

<turtle> = turtle.Turtle () Creates a new turtle with the variable name <turtle>

<turtle>.back (<steps>) Moves backward (opposite-facing direction) for
number of <steps>

<turtle>.forward (<steps>) Moves forward (facing direction) for number of
<steps>

<turtle>.hideturtle () Makes the <turtle> invisible

<turtle>.left (<degrees>) Turns counterclockwise the number of <degrees>

<turtle>.right (<degrees>) Turns clockwise the number of <degrees>

<turtle>.showturtle () Makes <turtle> visible

<turtle>.speed (<value>) The <value> can be set to “fastest”, “fast”, “normal”,
“slow”, “slowest”. Alternatively, use the numbers 1 to 10
to increase speed. The value of 0 is the fastest.

Turtle positioning and direction

The PLS supports these turtle library module subprograms to control the positioning
and direction.

Subprogram Description

<turtle>.home () Moves to canvas origin (0, 0)

<turtle>.reset () Clears the drawing canvas, sends the turtle home and
resets variables to default values

<turtle>.setheading (<degrees>) Sets the orientation to <degrees>

<turtle>.setposition (<x>, <y>) Positions the turtle at coordinates (<x>, <y>)

Turtle filling shapes

The PLS supports these turtle library module subprograms to control filling.

Subprogram Description

<turtle>.begin_fill () Call just before drawing a shape to be filled

<turtle>.end_fill () Call just after drawing the shape to be filled. You must
call <turtle>.begin_fill () before drawing

<turtle>.fillcolor (<colour>) Sets the colour used to fill. The input argument is a
string, for example: "red".

17

Turn over

W79752A

Turtle controlling the pen

The PLS supports these turtle library module subprograms to control the pen.

Subprogram Description

<turtle>.pencolor (<colour>) Sets the colour of the pen. The input argument is a
string or an RGB colour, for example: "red".

<turtle>.pendown () Puts the pen down

<turtle>.pensize (<width>) Makes the pen the size of <width> (positive number)

<turtle>.penup () Lifts the pen up

Turtle circles

The PLS supports this turtle library module subprogram to draw a circle.

Subprogram Description

<turtle>.circle (<radius>, <extent>) Draws a circle with the given <radius>. The
centre is the <radius> number of units to
the left of the turtle. That means, the turtle is
sitting on the edge of the circle. The parameter
<extent> does not need to be given, but
provides a way to draw an arc, if required. An
extent of 180 would be half a circle.

Turtle colours

Python colours can be given by using a string name. There are many colours and you can
find information online for lists of all the available colours.

Here are a few to get you started:

blue black green yellow

orange red pink purple

indigo olive lime navy

orchid salmon peru sienna

white cyan silver gold

Console session

A console session is the window or command line where the user interacts with a
program. It is the default window that displays the output from print () and echoes the
keys typed from the keyboard.

It will appear differently in different development tools.

Code style

Although Python does not require all arithmetic and logical/Boolean expressions to be
fully bracketed, it might help the readability to bracket them. This is especially useful if
the programmer or reader is not familiar with the order of operator precedence.

18 W79752A

The same is true of spaces. The logic of a line can be more easily understood if a few extra
spaces are introduced. This is especially helpful if a long line of nested subprogram calls
is involved. It can be difficult to read where one ends and another begins. The syntax of
Python is not affected, but it can make understanding the code much easier.

Line continuation

Long code lines may also be difficult to read, especially if they scroll off the edge of the
display window. It’s always better for the programmer to limit the amount of scrolling.

There are several ways to break long lines in Python.

Python syntax allows long lines to be broken inside brackets () and square brackets [].
This works very well, but care should be taken to ensure that the next line is indented to
a level that aids readability. It is even possible and recommended to add an extra set of
brackets () to expressions to break long lines.

Python also has a line continuation character, the backslash \ character. It can be inserted,
following strict rules, into some expressions to cause a continuation. Some editors will
automatically insert the line continuation character if the enter key is pressed.

Carriage return and line feed

These affect the way outputs appear on the screen and in a file. Carriage return means
to go back to the beginning of the current line without going down to the next line. Line
feed means to go down to the next line. Each is a non-printable ASCII character, that has
an equivalent string in programming languages.

Name Abbreviation ASCII hexadecimal String

Carriage return CR 0x0D "\r"

Line feed LF 0x0A "\n"

These characters are used in some combination to control outputs. Unfortunately, not
every operating system uses the same. However, editors automatically convert input and
output files to make sure they work properly. In Python, print () automatically adds
them so that the console output appears on separate lines.

When writing code to handle files, a programmer will need to remove some of these
characters when reading lines from files and add them when writing lines to files. If
needed, they are added with string concatenation. If needed to be removed, they are
removed using the strip () subprogram.

