©2022 Pearson Education Ltd.

111

- TN ©
W 7 5 1 9 8 A

a4)
Pearson Edexcel Level 1/Level 2 GCSE (9-1)
Paper
reference
Computer Science
PAPER 2: Application of Computational Thinking
Programming Language Subset
Version 4
. J
[PLS Booklet A
You do not need any other materials.
. - - S
Turn over

Pearson

Contents

INEFOTUCTION w.cerveerereeceeeiieciseei et ssse s ss st sss s b s bR R SRR b bbbttt 4
COMIMENTES ettt es st s sttt s s s s bbb AR AR e bbbttt bt st asbasbasbases 5
[AENTIFIELS ettt b s bt s s sse bbb a sttt bbb 5
Data tYPES @NA CONVEISION ...oueeueucireeereiiseisseissessesssessetssssssssssesssessssssssssssssssssesssssssssssessssssssssssssssssesssesssssssesssessssssssssssssesens 5
PrIMITIVE AaTa TYPES eureureeeeeiecisetiseiseiseiseis it tssessse s sssesss s sssesssesssesssesssesssesssessssssesssesssesssesasesssssssssssssssssesssesanes 5
CONVEISION c.ouceereeneeneneneeeessesense e essessesasessesssess s sss s s sas s s as s e R s R et s b aenanesees 5
CONSTANTS .ottt s e e Rt n s ees 5
Combining declaration and iNItialiSATION ... sssasssss s ssssasssssssssssssnes 5
STrUCTUIEA AL TYPES ettt sss bbb s s s s s s bbb as s s bt sasassessssssssess 5
DIMENSIONS .ottt s s sss s s bbb bbbt bbb 5
OPEIATONS .eveeieereersesiseisieistetsessss st sss s ssasssss s sssssssssssss st s ssssesssssssssssssssssessssesssssssssssssessssssssssessssssssssssssssssssssessssssssssnssssssons 6
ATENMETIC OPEIATOIS ...ttt ssss st s st bbb s s b e bbb e b s s R s b e b b e s st bass s bas 6
REIAtIONAI OPEIALOIS ...oecveeerteiererississsrississ st sss s ss st s b sss bbb es s b s et b st e s aen b basssesbanen 6
LOQICAI/BOOIEAN OPEIALOISoueueereeeineieeiseieisseissesssesssessssssssssssssssssesssssasssssessssssssssssssssssesssesssssssesssessssssssssssssesssessses 6
Programming CONSTIUCTES ...uuiveirerireeiesieiseisiseisiessesssessssessesessesssessssessnsssesssssssssssssssssssssssses 7
ASSIGNIMENT ...ttt ssessasessessse s s sse s ase s s ssessassassssssssssssssasessesesstassssasssessssessesssseassssssssssssssssessssesssssses 7
SEQUENCE ettt sttt sttt sttt et e s e ettt et A ae A e st st et e e At et A b s A et et et et st an st asben st enantanes 7
BIOCKING ouvttieiniireinsietiseiseissiseississsssissssssssesssassanes 7
SEIBCTION ettt bbb a bbbt ee 7
REPETITION ettt s s st st s st s bttt s st st e s st s st st sn s s ses st ensasnsssassnantans 7
=T = Ao o PP 7
SUDPIOGIAMS ...cveiererteisiestssessies s sessess s sesssssssssasssss b ssasssssbesssssssssssssssssssasssssbsssasssssssssesssss s s bassssssssasssssssssesssssensanssssanes 8
INPULS QN QUEPULS ..ottt issssssss s ssesssssasssssssssasssssssssasssssasssnssnsens 8
SCreeN aNA KEYDOAIT ...ttt sass s ssse s s bbbt s sase bbb s s s sasesasess 8
FILES ettt bbbt s s R bRttt 8
SUPPOITEA SUDPIOGIAMS ...ttt isssssissasses 9
BUIIE-IN SUDPIOGIAMS ..ottt ssanes 9
LiST SUDPIOGIAMS ...ttt ssssssissssssssesseses 10
SEIING SUDPIOGIAMS ..ottt sass s sssssss s bbb s s bbb as s b s s s sassssasas 11
FOrMATEING STHNGS ettt st st sss s s st bssssesssssessasssssassassen 12

2 W75198A

LIDFATY MOAUIES ..oeveereeieeeieceeeiitiseiseesesssesssesessessssesssessssesssessssessssssssesssse s ssssessssesssessssesssssasessssesssessasesssssssessssesssess 13

RANAOM [IDrary MOGUIE ...ttt sseissetssis s s st ssssssssssssssesssssssssasasssasssssssssseses 13
MaAth [IDFrary MOAUIE ...ttt sss st ssse bbb st ass s bbb sassssssesssesas 13
TiME [IDFArY MOAUIE ...ttt ssesss s ssesssesase s bbbt s st s bbb besesases 13
Turtle graphics lIDrary MOAUIE ...t s st sas s s sssssss s ssssssssssssssssnes 14
TIPS FOr USING TUIIE ettt sttt s s s s s ssss b s st s s s s s s s s s s s snsens 14

Turtle Window and draWing CANVASineineininsisinsinsisssnes 14

Turtle creation, visibility aNd MOVEMENT ...t st ssssssssssssssssses 15

Turtle positioNiNG ANA AIFECTION ...ttt ssssss s s sssssssssssssssssssesssssssssees 15

TUILIE filliNG SNAPES e sssss s s s s s ssss s s s s s sssssssssssassssssssssssssasssassns 15

TUrtle CONLIOIING thE PEN s sssessss it s s sssssasssssassssssssssssasssssesans 16

TUILIE CIFCIES ottt issssss st bbb bbbttt bbbt 16

TUPEIE COLOUIS .ottt issass e ss bbb s st st as bbbt b bt s st ase 16
CONSOIE SESSION ..ceuirireirieeiiseeseeseisese it sssesssess s ss st st sse s s bbbttt bbbt bt aatine 16
COAE SEYIE ettt st bbbt b s s R RS eAe b E AR s ARttt Rt es 16
LiNE CONTINUATION ...ttt b bbbttt bbbt 17
Carriage return and [INE fEEU..... st s s s s s s s s s bbb s s sasnsens 17

W75198A 3

Turn over

Introduction

The Programming Language Subset (PLS) is a document that specifies which parts of Python 3 are
required in order that the assessments can be undertaken with confidence. Students familiar with
everything in this document will be able to access all parts of the Paper 2 assessment. This does not
stop a teacher/student from going beyond the scope of the PLS into techniques and approaches that
they may consider to be more efficient or engaging.

Pearson will not go beyond the scope of the PLS when setting assessment tasks. Any student
successfully using more esoteric or complex constructs or approaches not included in this document
will still be awarded marks in Paper 2 if the solution is valid.

4 W75198A

The pair of <> symbols indicates where expressions or values need to be supplied. They are not part
of the PLS.

Comments

Anything on a line after the character # is considered a comment.

Identifiers

Identifiers are any sequence of letters, digits and underscores, starting with a letter.
Both upper and lower case are supported.

Data types and conversion

Primitive data types

Variables may be explicitly assigned a data type during declaration.

Variables may be implicitly assigned a data type during initialisation.

Supported data types are:

Data type PLS
integer int

real float

Boolean bool
character str

Conversion

Conversion is used to transform the data types of the contents of a variable using int(), str(), float(),
bool() or list(). Conversion between any allowable types is permitted.

Constants

Constants are conventionally named in all uppercase characters.
Combining declaration and initialisation

The data type of a variable is implied when a variable is assigned a value.
Structured data types

A structured data type is a sequence of items, which themselves are typed. Sequences start with an
index of zero.

Data type Explanation PLS

string A sequence of characters str

array A sequence of items with the same (homogeneous) data type list

record A sequence of items, usually of mixed (heterogenous) data types |list
Dimensions

The number of dimensions supported by the PLS is two.

The PLS does not support ragged data structures. Therefore, in a list of records, each record will have
the same number of fields.

W75198A 5

Turn over

Operators

Arithmetic operators

Arithmetic operator Meaning
/ division
* multiplication
*x exponentiation
+ addition
- subtraction
// integer division
% modulus
Relational operators
Logical operator Meaning
== equal to
I= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
Logical/Boolean operators
Operator Meaning
and both sides of the test must be true to return true
or either side of the test must be true to return true
not inverts

W75198A

Programming constructs

Assignment

Assignment is used to set or change the value of a variable.

<variable identifier>

<value>

<variable identifier>

<expression>

Sequence

Every instruction comes one after the other, from the top of the file to the bottom of the file.

Blocking

Blocking of code segments is indicated by indentation and subprogram calls. These determine the
scope and extent of variables they declare.

Selection

if <expression>:
<command>

If <expression> is true, then command is executed.

if <expression>:
<command>
else:
<command>

If <expression> is true, then first <command> is
executed, otherwise second <command> is executed.

if <expression>:
<command>

<command>
else:
<command>

elif <expression>:

If <expression> is true, then first <command> is
executed, otherwise the second <expression> test is
checked. If true, then second <command> is executed,
otherwise third <command> is executed.

Supports multiple instances of ‘elif’.

The ‘else’ is optional with the ‘elif’.

Repetition

<command>

while <condition>:

Pre-conditioned loop. This executes <command> while
<condition> is true.

Iteration

<command>

for <id> in <structure>:

Executes <command> for each element of a
data structure, in one dimension.

<command>

for <id> in range (<start>, <stop>): | Count-controlled loop. Executes <command> a

fixed number of times, based on the numbers
generated by the range function. <stop> is
required. <start> is optional.

for <id> in range (<start>, <stop>, | Same asabove, except that <step> influences

<step>): the numbers generated by the range function.
<command> <stop> is required. <start> and <step> are
optional.
W75198A 7

Turn over

Subprograms

def <procname> ():
<command>

A procedure with no parameters

def <procname> (<paramA>, <paramB>): [A procedure with parameters
<command>

def <funcname> ():
<command>
return (<value>)

A function with no parameters

def <funcname> (<paramA>, <paramB>): [A function with parameters
<command>
return (<value>)

Inputs and outputs

Screen and keyboard

print

(<item>) Displays <item> on the screen

input

(<prompt>) Displays <prompt> on the screen and
returns the line typed in

Files

The PLS supports manipulation of comma separated value text files.

File operations include open, close, read, write and append.

<fileid> = open (<filename>, "r") |[Opens file for reading

for <line> in <fileid>: Reads every line, one at a time

<alist> = <fileid>.readlines () Returns a list where each item is a line from
the file

<aline> = <fileid>.readline () Returns a line from a file. Returns an empty
string on the end of the file

<fileid> = open (<filename>, "w") |Opens a file for writing

<fileid> = open (<filename>, "a") |Opens a file for appending

<fileid>.writelines (<structure>) |Writes <structure> to a file. <structure> is a
list of strings

<fileid>.write (<aString>) Writes a single string to a file

<fileid>.close () Closes file

W75198A

Supported subprograms
Built-in subprograms

The PLS supports these built-in subprograms.

Subprogram

Description

bool (<item>)

Returns <item> converted to the equivalent
Boolean value

chr (<integer>)

Returns the string which matches the Unicode
value of <integer>. The first 128 characters of
Unicode are equivalent to ASCII.

float (<item>)

Returns <item> converted to the equivalent
real value

input (<prompt>)

Displays the content of prompt to the screen
and waits for the user to type in characters
followed by a new line

int (<item>)

Returns <item> converted to the equivalent
integer value

len (<object>)

Returns the length of the <object>, such as a
string, one-dimensional or two-dimensional
data structure

ord (<char>)

Returns the integer equivalent to the Unicode
string of the single character <char>. The first
128 characters of Unicode are equivalent to
ASCII.

print (<item>)

Prints <item> to the display

range (<start>, <stop>, <step>)

Generates a list of numbers using <step>,
beginning with <start> and up to, but not
including, <stop>. A negative value for <step>
goes backwards. <stop> is required. <start>
and <step> are optional. The default value for
<start> is zero. The default value for <step> is
positive one.

round (<x>, <n>)

Rounds <x> to the number of <n> digits after
the decimal (uses the 0.5 rule). The <n> is
optional. If omitted, the function returns the
nearest integer to <x>.

str (<item>)

Returns <item> converted to the equivalent
string value

W75198A

Turn over

9

List subprograms

The PLS supports these list subprograms.

10

Subprogram

Description

<list>.append (<item>)

Adds <item> to the end of the list

del <list> [<index>]

Removes the item at <index> from list

<list>.insert (<index>, <item>)

Inserts <item> just before an existing one
at <index>

<alList>
<alList>

list ()
[]

Two methods of creating a list structure.
Both are empty.

W75198A

String subprograms

The PLS supports these string subprograms.

Subprogram Description

len (<string>) Returns the length of <string>

<string>.find (<substring>, Returns the location of the first instance of

<start>, <end>) <substring> in the original <string>, reading from
left to right. <start> is the index to begin the find. The
default is zero. <end> is the index to stop the find.
The default is the end of the string. Returns -1, if not
found.

<string>.index (<substring>, Returns the location of the first instance of

<start>, <end>) <substring> found in the original <string> as read
from left to right. Raises an exception if not found.
<substring> is required. <start> and <end> are
optional. The default value for <start> is zero.
The default value for <end> is the end of the string.

<string>.isalpha () Returns True, if all characters are alphabetic, A-Z

<string>.isalnum () Returns True, if all characters are alphabetic, A-Z and
digits (0-9)

<string>.isdigit () Returns True, if all characters are digits (0-9),
exponents are digits

<string>.replace (<s1>, <s2>) Returns original string with all occurrences of <s1>
replaced with <s2>

<string>.split (<char>) Returns a list of all substrings in the original, using
<char> as the separator

<string>.strip (<char>) Returns original string with all occurrences of <char>
removed from the front and back

<string>.upper () Returns the original string in uppercase

<string>.lower () Returns the original string in lowercase

<string>.isupper () Returns True, if all characters are uppercase

<string>.islower () Returns True, if all characters are lowercase

<string>.format (<placeholders>) |Formats valuesand putsthem into the <placeholders>

W75198A

11

Turn over

Formatting strings

Output can be customised to suit the problem requirements and the user’s needs by forming string
output.

<string>.format () can be used with positional placeholders and format descriptors.
Here is an example:

layout = “{:>10} {:~5d} {:7.4f}”
print (layout.format (“Fred”, 358, 3.14159))

Fred 358 3.1416

Category Description

Numbers Decimal integer (d), Fixed point (f)

Alignment [Left (<), Right (>), Centre (7)

Field size The total width of a field, regardless of how many columns are occupied

The * operator can be used to generate a line of repeated characters, for example “="* 10 will
generate T .

Concatenation of strings is done using the + operator.

String slicing is supported. myName[0:2] gives the first two characters in the variable myName.

12 W75198A

Library modules

The functionality of a library module can only be accessed once the library module is imported into

the program code.

Statement

Description

import <library>

Imports the <library> module into the current program

Random library module

The PLS supports these random library module subprograms.

Subprogram

Description

random.randint (<a>,)

Returns a random integer X so that <a> <= X <=

random.random ()

Returns a float number in the range of 0.0 and 1.0

Math library module

The PLS supports these math library module subprograms and constant.

Subprogram or constant

Description

math.ceil (<r>)

Returns the smallest integer not less than <r>

math.floor (<r>)

Returns the largest integer not greater than <r>

math.sqgrt (<x>)

Returns the square root of <x>

math.pi

The constant Pi (IT)

Time library module

The PLS supports this time library module subprogram.

Subprogram

Description

time.sleep (<sec>)

The current process is suspended for the given number of
seconds, then resumes at the next line of the program

W75198A

13

Turn over

Turtle graphics library module
Tips for using turtle

The default mode for the PLS turtle is “standard”. This means that when a turtle is created, it initially
points to the right (east) and angles are counterclockwise. You can change modes using
turtle.mode ().

The turtle window is one size and the turtle drawing canvas (inside the window) can be a different
size. To make the turtle window bigger, a screen needs to be created and set up. Here is an example:

WIDTH = 800

HEIGHT = 400

screen = turtle.Screen ()
screen.setup (WIDTH, HEIGHT)

To make the drawing canvas bigger use <turtle>.screensize ().

In some development environments, the turtle window will close as soon as the program completes.
There are two ways to keep it open:

« Add turtle.done () as the last line in the code file. This will keep the window open
until closed with the exit cross in the upper right-hand corner. It also allows scrollbars
on the window.

« Add aline asking for keyboard input, such as input(), as the last line. This will
keep the window open until the user presses a key in the console session. The scrollbars
will not work.

Turtle window and drawing canvas

The PLS supports these turtle library module subprograms to control the window and drawing
canvas. Notice that these subprograms do not use the name of the turtle you create to the left of the
dot, but the library name, “turtle” or a <window> variable.

Subprogram Description

<window>.setup (<width>, <height>) Sets the size of the turtle window to <width>
x <height> in pixels. Requires use of
turtle.Screen () to create <window> first.

turtle.done () Use as the last line of the file to keep the turtle
window open until it is closed using the exit
cross in the upper right-hand corner of the
window

turtle.mode (<type>) <type> is one of the strings “standard” or “logo”.
A turtle in standard mode, initially points to the
right (east) and angles are counterclockwise. A
turtle in logo mode, initially points up (north)
and angles are clockwise.

turtle.Screen () Returns a variable to address the turtle
window. Use with <window>.setup().

turtle.screensize (<width>, <height>) [Makes the scrollable drawing canvas size equal
to <width> x <height> in pixels. Note, use
with turtle.done () so scrollbars will be active.

14 W75198A

Turtle creation, visibility and movement

The PLS supports these turtle library module subprograms to control the turtle creation, visibility
and movement.

Subprogram Description

<turtle> = turtle.Turtle () Creates a new turtle with the variable name <turtle>

<turtle>.back (<steps>) Moves backward (opposite-facing direction) for
number of <steps>

<turtle>.forward (<steps>) Moves forward (facing direction) for number of
<steps>

<turtle>.hideturtle () Makes the <turtle> invisible

<turtle>.left (<degrees>) Turns anticlockwise the number of <degrees>

<turtle>.right (<degrees>) Turns clockwise the number of <degrees>

<turtle>.showturtle () Makes the turtle visible

<turtle>.speed (<value>) The <value> can be set to “fastest’, “fast’, “normal’,

n i

“slow”, “slowest”. Alternatively, use the numbers 1 to 10
to increase speed. The value of 0 is the fastest.

Turtle positioning and direction

The PLS supports these turtle library module subprograms to control the positioning and direction.

Subprogram Description
<turtle>.home () Moves to canvas origin (0, 0)
<turtle>.reset () Clears the drawing canvas, sends the turtle home and

resets variables to default values

<turtle>.setheading (<degrees>) [Setsthe orientation to <degrees>

<turtle>.setposition (<x>, <y>) | Positions the turtle at coordinates (<x>, <y>)

Turtle filling shapes

The PLS supports these turtle library module subprograms to control filling.

Subprogram Description

<turtle>.begin fill () Call just before drawing a shape to be filled

<turtle>.end fill () Call just after drawing the shape to be filled. You must
call <turtle>.begin_fill() before drawing.

<turtle>.fillcolor (<colour>) Sets the colour used to fill. The input argument can be
a string or an RGB colour, for example: "red", "#551A8B",
"(0, 35, 102)".

W75198A 15

Turn over

Turtle controlling the pen

The PLS supports these turtle library module subprograms to control the pen.

Subprogram Description

<turtle>.pencolor (<colour>) Sets the colour of the pen. The input argument can be
a string or an RGB colour, for example: "red", "#551A8B",

"(0, 35, 102)".

Puts the pen down

<turtle>.pendown ()

<turtle>.pensize (<width>) Makes the pen the size of <width> (positive number)

<turtle>.penup () Lifts the pen up

Turtle circles

The PLS supports this turtle library module subprogram to draw a circle.

Subprogram Description

<turtle>.circle (<radius>, <extent>) [Draws a circle with the given <radius>.The
centre is the <radius> number of units to

the left of the turtle. That means, the turtle is
sitting on the edge of the circle. The parameter
<extent> does not need to be given, but
provides a way to draw an arg, if required. An
extent of 180 would be half a circle.

Turtle colours

Python colours can be given by using a string name. There are many colours and you can find
information online for lists of all the available colours.

Here are a few to get you started:

blue black green yellow
orange red pink purple
indigo olive lime navy
orchid salmon peru sienna
white cyan silver gold

Console session

A console session is the window or command line where the user interacts with a program. It is
the default window that displays the output from print () and echoes the keys typed from

the keyboard.

It will appear differently in different development tools.

Code style

Although Python does not require all arithmetic and logical/Boolean expressions to be fully
bracketed, it might help the readability to bracket them. This is especially useful if the programmer or
reader is not familiar with the order of operator precedence.

16

W75198A

The same is true of spaces. The logic of a line can be more easily understood if a few extra spaces are
introduced. This is especially helpful if a long line of nested subprogram calls is involved. It can be
difficult to read where one ends and another begins. The syntax of Python is not affected, but it can
make understanding the code much easier.

Line continuation

Long code lines may also be difficult to read, especially if they scroll off the edge of the display
window. It's always better for the programmer to limit the amount of scrolling.

There are several ways to break long lines in Python.

Python syntax allows long lines to be broken inside brackets (), square brackets [], and braces {}. This
works very well, but care should be taken to ensure that the next line is indented to a level that aids
readability. It is even possible and recommended to add an extra set of brackets () to expressions to
break long lines.

Python also has a line continuation character, the backslash \ character. It can be inserted, following
strict rules, into some expressions to cause a continuation. Some editors will automatically insert the
line continuation character if the enter key is pressed.

Carriage return and line feed

These affect the way outputs appear on the screen and in a file. Carriage return means to go back
to the beginning of the current line without going down to the next line. Line feed means to go
down to the next line. Each is a non-printable ASCII character, that has an equivalent string in
programming languages.

Name Abbreviation ASCIl hexadecimal String
Carriage return CR 0x0D “\r"
Line feed LF O0x0A "“\n"

These characters are used in some combination to control outputs. Unfortunately, not every
operating system uses the same. However, editors automatically convert input and output files to
make sure they work properly. In Python, print () automatically adds them so that the console
output appears on separate lines.

When writing code to handle files, a programmer will need to remove some of these characters when
reading lines from files and add them when writing lines to files. If needed, they are added with string
concatenation. If needed to be removed, they are removed using the strip () subprogram.

W75198A 17

