Mark Scheme (Results)

## June 2022

Pearson Edexcel GCSE In Astronomy (1AS0) Paper 2: Telescopic astronomy

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2022
Publications Code 1ASO_02_rms_20220825
All the material in this publication is copyright
© Pearson Education Ltd 2022

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
\(\left.$$
\begin{array}{|l|ll|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array}
$$ \& Answer \& Mark <br>
\hline \mathbf{1 ( a )} \& (i) \& B \& comet <br>

(ii) \& C \& galaxy\end{array}\right]\)| (1) |
| :--- |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( b )}$ | (i) B corona | (1) |
|  | (ii) A aurora |  |
|  | (iii) C nebula | (1) |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 ( c )}$ | Any indication of rings or (symmetrical) bulges at the sides. <br> Further detail, e.g. divisions in rings, horizontal bands on <br> disc, moons. | (1) <br> $\mathbf{( 1 )}$ |

\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array}
$$ \& Answer \& Mark <br>
\hline 2(a) \& (i) \& A main sequence <br>

(ii) \& B neutron star\end{array}\right]\)| (1) |
| :--- |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 2(b) | (i) A asteroids | (i) |
|  | (ii) A comet | (1) |


| Question <br> number | Answer | Mark |
| :--- | :---: | :--- |
| 2(c) | A absolute magnitude and spectral class | (1) |


| Question <br> number | Answer | Mark |
| :--- | :---: | :--- |
| 2(d) | C is expanding | (1) |


| Question <br> number | Answer | Mark |
| :--- | :---: | :--- |
| 2(e) | C radio waves | (1) |


| Question <br> number | Answer | Mark |
| :--- | :---: | :--- |
| 3(a) | B geocentric | (1) |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 3(b) | (i)Moons orbit Jupiter <br> Moons do not orbit the Earth <br> (Accept: not all objects orbit the Earth) | (1) <br> (ii)Changing size (ignore phase/shape) <br> (means) changing distance (from Earth) <br> (iii) Identified mountains, valleys etc <br> (which are) terrestrial features |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{3 ( c )}$ | Any one from: <br> Higher magnification <br> Higher resolution (Accept: sharper) <br> Brighter/can image fainter objects (Ignore: light grasp) | (1) |
|  | Reference to data in the table. <br> (Accept comparative statements e.g. `larger aperture' etc. | (1) |
| Question <br> number | Answer | Mark |  |
| :--- | :--- | :--- | :--- |
| 4(a) | (i) | B | Planet B |
|  | (ii) | C | Planet C |
|  | (iii) $\mathbf{A}$ | Planet A | $\mathbf{( 1 )}$ |
|  | (iv) $\mathbf{C}$ | Planet C | $\mathbf{( 1 )}$ |
|  |  | $\mathbf{( 1 )}$ |  |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 4(b) | (i) Planet passing in front of star (as seen from Earth) <br> Causes dip in brightness <br> (points may be conveyed via writing or diagram) | (1) <br> (ii) $\mathbf{1 4 0} \mathbf{0 0 0 k m}$ <br> Working: <br> (sloped parts of graph) = 1 hour <br> x 140 000 km/h <br> km (only with correct answer) |
|  |  | (3) |
|  |  | $(1)$ |
|  |  | $(1)$ |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 4(c) | Mention of a suitable method, e.g. astrometry, spectral <br> shifts. <br> Basic principle of chosen method established indicating <br> measurement(s) to be made (by text or diagram) | (1) |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{5 ( a )}$ | (i) A fly-by |  |
|  | (ii) A it has more craters than the near side | (1) <br> (1) |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{5 ( b )}$ | (i) Any two from: <br> Stronger gravity (on the Earth) / Weaker gravity (on Moon) <br> No air resistance (on Moon) <br> Higher escape velocity (on Earth) /lower on Moon <br> Lighter spacecraft (on Moon) <br> Mass of Earth > mass of Moon. <br> (ii) Any one from: <br> Would need too much energy <br> Both bodies are already spinning <br> The Moon is orbiting the Earth <br> Effect of gravity. | (2) |
| (iii) (At least one) orbit of Earth |  |  |
| Smooth curved path between Earth and Moon (orbits) |  |  |
| Reject: Completely straight line (between sites) |  |  |
| (At least one) orbit of Moon |  |  |$\quad$| (1) |
| :--- |
| Question number | Answer | Mark |
| :---: | :---: | :---: |
| 5(c) | Any two from: <br> - Seismic measurements (of Moon's interior) <br> - Surface rock samples <br> - Levels of charged particles <br> - Properties of lunar atmosphere (pressure, temperature, composition) <br> - Temperature / heat flows <br> - Distance to Earth (LASER ranging) <br> - Micrometeorites <br> - (Accurate) measurements of lunar surface gravity <br> - (Accurate) measurements of lunar surface magnetic field strength <br> - Moonquakes <br> - Solar Wind <br> - Electric potentials due to positive ions. | (2) |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{6 ( a )}$ | Jupiter is made (mostly) of gas <br> (whereas) Earth is mostly rock <br> ;different composition/density' scores one mark | (1) |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{6 ( b )}$ | (i) Shadow <br> of another moon (not Europa) (name (Io) not required) <br> (ii) Any two from: <br> Made of gas/not solid <br> Storm <br> Rotating <br> High speed winds <br> In upper cloud levels <br> Similar size to terrestrial planets | (1) |
|  | (iii) Telescopes not able to see it |  |
| Correct property of telescope, e.g. resolution, aperture. |  |  |
| (i.e 'Telescope not good enough' or similar scores 1) |  |  |$\quad$| (1) (1) |
| :--- |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{6 ( c )}$ | Any two from: <br> • Presence of water on Earth <br> - Size of terrestrial planets <br> - Current position relative to frost line <br> - Current position compared to Jovian-sized planets in <br> other solar systems |  |
|  | Formation of Asteroid Belt. | (2) |
|  |  |  |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{7 ( a )}$ | (i) $30(\mathrm{~cm})$ (unit not required) <br> (ii) $50600 \mathrm{~cm} / 506 \mathrm{~m} / 0.5 \mathrm{~km}$ <br> (Correct unit required for second mark) <br> Working: calculation of $7.57 \times 10^{12} \mathrm{~km}$ | (1) <br> (2) |
| Question number | Answer | Mark |
| :---: | :---: | :---: |
| 7(b)(i) | (Mars) 1.5 0.1 (both numbers required) <br> Ceres / Asteroid Belt / Other named asteroid  <br> (Saturn) 9.5 0.5 (both numbers required) | $\begin{aligned} & (1) \\ & (1) \\ & (1) \end{aligned}$ |
| 7(b) (ii) | Marking instructions <br> Markers must apply the descriptors in line with the general marking guidance and the qualities outlined in the levels-based mark scheme below. <br> Indicative content guidance <br> The indicative content below is not prescriptive and candidates are not required to include all of it. Other relevant material not suggested below must also be credited. Relevant points may include: <br> - Excellent agreement with Mercury to Jupiter <br> - Including Asteroid Belt (former planet) <br> - Reasonable agreement for Saturn and Uranus <br> - Poor agreement for Neptune <br> - (also) poor agreement for Pluto/Kuiper Belt <br> - High number of 'tunable' parameters in no. sequence | (6) |
| Level | Mark | Descriptor |
| :--- | :--- | :--- |
| Level 1 | 0 | No rewardable material. |
|  |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
and integrating relevant knowledge throughout the response. (AO3)
- The response shows a well -developed, sustained line of scientific reasoning which is clear, coherent and logically structured, leading to a supported conclusion. (AO3)
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 8(a) | $\bullet$ Needs to be above (Earth's) atmosphere | (1) <br> $\mathbf{( 1 )}$ |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8 ( b )}$ | (i) Any one from: <br> High escape velocity <br> High density (ignore: high mass) <br> Escape velocity greater than speed of light <br> Strong gravitational field/pull <br> (ii) Black hole accompanied by an orbiting star <br> (Ignore: binary system with two similar-mass <br> components) <br> Material pulled (from star) into black hole (Accretion disc) <br> Material (not black hole) emits X-rays. | (1) |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{8 ( c )}$ | (i) core / centre <br> (ii) Any two from: <br> Most dense (mass or energy) area <br> Black hole present <br> Accretion disc. | (1) <br> (2) |
| Question number | Answer | Mark |
| :---: | :---: | :---: |
| 8(d) | Any two from: <br> - AGNs <br> - Seyfert galaxies <br> - stars <br> - supernova remnants <br> - neutron star systems <br> - any other named galaxy <br> - any other named black hole system. | (2) |
| Question number | Answer | Mark |
| :---: | :---: | :---: |
| 9(a) | An answer that includes points of interpretation/evaluation to provide a reasoned account of the data. <br> - Small aperture telescope (although Sun quite bright) <br> - Calculation of magnification (17.5x) <br> - Low magnification (although Sun quite large in sky) <br> - Use of digital camera to record images <br> - Phone camera not designed for astronomical work <br> - No tracking equipment <br> - Solar filter used <br> - Safety. | (3) |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 9(b) | Marking instructions <br> Markers must apply the descriptors in line with the general <br> marking guidance and the qualities outlined in the levels-based mark <br> scheme below. | (6) |
|  | Indicative content guidance <br> The indicative content below is not prescriptive and candidates are <br> not required to include all of it. Other relevant material not suggested <br> below must also be credited. Relevant points may include: <br> - Use repeats and averages <br> - Observe over longer period (years) <br> - Use Tracking telescope <br> - Use larger magnification <br> - Use astronomical digital eyepiece camera <br> - Use larger aperture - higher resolution |  |
| Level | Mark | Descriptor |
| :--- | :--- | :--- |
| Level 1 | $1-2$ | No rewardable material. |
| -Basic interpretation and evaluation of the data/information may <br> be attempted but will be limited and narrow in scope. (AO3) <br> The response will contain basic info rmation with little linkage <br> between points made. Lines of reasoning may be attempted <br> but are incomplete or lack clarity. A conclusion may be <br> attempted but lacks support. (AO3) |  |  |
| Level 2 | $3-4$ | - Interpretation and evaluation of the data/information that <br> Attempts to synthesise and integrate relevant knowledge. <br> (AO3) |
| - The response shows some linkages and lines of reasoning <br> with some structure, leading to a conclusion that is partially <br> supported. (AO3) |  |  |
| Level 3 | 5-6 |  |
| :---: | :---: | :---: |
|  |  | data/information that demonstrates the skills of synthesising and integrating relevant knowledge throughout the response. (AO3) <br> - The response shows a well -developed, sustained line of scientific reasoning which is clear, coherent and logically structured, leading to a supported conclusion. (AO3) |
| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| 9(c) | Any two from: <br> • Appear in pairs <br> • Leader and follower <br> • Break up and disperse. | (2) |
|  | Ignore: Description of apparent motions due to Sun's <br> rotation. |  |
| Question number | Answer | Mark |
| :---: | :---: | :---: |
| 10(a) | (i) <br> - Raising (2.5) to the power 26 (allow 27) is an enormous number (about 20 billion). <br> Or any two from: <br> - Link between magnitude and brightness is not linear (logarithmic) <br> - Each step on mag scale is a huge change in brightness <br> - Each step on mag scale multiplies (not adds to) brightness | (2) |
|  | (ii) Use of $\mathrm{m}=-27$ <br> Substitution of numbers into equation <br> Calculation of $d=4.85 \times 10^{-6}(\mathrm{pc})$ <br> Calculation of $M=4.57$ | (1) <br> (1) <br> (1) <br> (1) |
|  |  |  |
|  | (iii) Sun is (very) close to Earth Closer than 10pc (32.6ly) / distance from which absolute magnitude is defined | $\begin{aligned} & (1) \\ & (1) \end{aligned}$ |
| Question number | Answer | Mark |
| :---: | :---: | :---: |
| 10(b) | (i) $\operatorname{Star} \mathrm{A}$ <br> (ii)15 (pc) <br> Working: <br> ( 3 magnitudes means) Star $A$ is $\mathbf{1 6} \mathbf{x}$ brighter <br> To appear the same brightness, Star B must be $\mathbf{4 x}$ closer <br> 60pc $/ 4=15(\mathrm{pc})$ <br> (240(pc) scores 2 marks) | (1) <br> (3) <br> (1) <br> (1) |

