Mark Scheme (Results)

June 2022

Pearson Edexcel GCSE In Astronomy (1AS0) Paper 1: Naked eye Astronomy

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2022
Publications Code 1ASO_01_rms_20220825
All the material in this publication is copyright
© Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array} & \text { Answer } & \text { Mark } \\
\hline \mathbf{1}(\mathbf{a})(\mathbf{i}) & \begin{array}{c}\text { Sketch A - Orion } \\
\\
\end{array} \begin{array}{l}\text { NOT sketch B - Ursa Major } \\
\\
\end{array}
$$ \quad NOT sketch C - Cassiopeia

NOT sketch D - Cygnus\end{array}\right]\)| |
| :--- |

Question number	Answer	Mark
$\mathbf{1}$ (a)(ii)	NOT sketch A - Orion	
NOT sketch B - Ursa Major		
Sketch C - Cassiopeia		
NOT sketch D - Cygnus		

Question number	Answer	Mark
1 (a)(iii)	NOT sketch A - Orion NOT sketch B - Ursa Major NOT sketch C - Cassiopeia Sketch D - Cygnus	1

Question number	Answer	Additional Guidance	Mark
1 (b)(i)	Description or clearly labelled diagram to include: -small hole in the front of projector/camera or small hole in a piece of paper/card (1) screen for the image at the rear of projector/camera (1)Do not allow projection with the use of a telescope/binoculars	$\mathbf{2}$	

Question number	Answer	Mark
$\mathbf{1}(\mathbf{b})($ ii $)$	(Faint) band of light	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{1}$ (b)(iii)	Milky way is too faint for the image to be seen	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{2 (a) (i)}$	NOT A crust - lower temperature than inner core B inner core - has the greatest average temperature NOT C mantle - lower temperature than inner core NOT D outer core - lower temperature than inner core	$\mathbf{1}$

Question number	Answer	Mark
2 (a)(ii)	NOT A crust - does not include mantle \& inner core B crust and inner core NOT C crust, mantle, inner core and outer core - includes mantle NOT D inner core and outer core - outer core is liquid	$\mathbf{1}$

Question number	Answer	Mark		
$\mathbf{2 (a) (i i i)}$	NOT A inner core - does not include outer core NOT B mantle and inner core - mantle not made of mainly iron and nickel NOT C mantle, inner core and outer core - mantle not made of mainly iron and nickel	$\mathbf{1}$		
	D inner core and outer core		\quad	
:---				

Question number	Answer	Mark
2 (a)(iv)	Pluto	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{2 ~ (b) ~}$	Drawing of a circle/squashed circle (1) Drawing of a good oblate spheroid Symmetrical on vertical and horizontal axis (1)	$\mathbf{2}$

Question number	Answer	Mark
$\mathbf{2 (c) (i)}$	NOT A Antarctic Circle - Sun does not rise above	
	B Arctic Circle -Sun does Summer Solstice Winter Solstice	$\mathbf{1}$
	NOT C Tropic of Cancer - incorrect answer horizon on	
NOT D tropic of Capricorn - incorrect answer		

Question number	Answer	Mark
2 (c)(ii)	NOT A Antarctic Circle - incorrect answer NOT B Arctic Circle - incorrect answer NOT C Tropic of Cancer - Sun passes overhead on the Summer Solstice D Tropic of Capricorn - Sun passes overhead on the Winter Solstice	1

Question number	Answer	Mark
3 (a)(i)	Sun, Earth and in a straight line (Dotted line is a marking guide and does NOT need to be drawn to gain the mark)	1

Question number	Answer	Mark
3 (a)(ii)	Earth, Sun and S in a straight line (Dotted line is a marking guide and does NOT need to be drawn to gain the mark)	1

| Question |
| :--- | :--- | :--- |
| number | Answer

Question number	Answer	Mark
$\mathbf{3 ~ (b) ~}$	Mercury (1) Venus (1)	$\mathbf{2}$

Question number	Answer	Mark
$\mathbf{3}$ (c)	Mercury (1)	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{3 (d)}$	$0.78(\mathrm{AU})$	$\mathbf{1}$
	Calculation:	
	$1.5(0)-0.72$	

Question number	Answer	Additional Guidance	Mark
$\mathbf{4 (a) (i)}$	To ensure that clock time roughly corresponds with the position of the Sun (1)	Award one mark for reference to sunset/sunrise/noon occurring at an appropriate time	$\mathbf{2}$
For different locations on the Earth (1) or Reference to apparent and mean solar time (1)			

Question number	Answer	Additional Guidance	Mark
$\mathbf{4}(\mathbf{a})(\mathbf{i i)}$	Calculation: (Average width of time zone in degrees) $=\frac{360}{24}$	Allow $\frac{360}{15}=24$	$\mathbf{1}$

Question number	Answer	Mark
4 (a)(iii)	Number of times zones $=4(2)$	$\mathbf{2}$
	Calculation: Change in longitude $=107-45=62$ degrees Number of time zones $=\frac{62}{15}(1)$ Number of time zones $=4.1$ Therefore, aircraft will pass through 4 time zones (1)	

Question number	Answer	Mark	
$\mathbf{4 (b) (\mathbf { i })}$		Gnomon	
(Allow either line shown in the diagram.)			

	Gnomon/Noon timelines are pointing South. Therefore, North is in the opposite direction.		
Question number	Answer	Mark	
4 (b)(ii)		\mathbf{C}	

Question number	Answer	Mark
4 (b)(iii)	GMT = 11:44 (2) If answer is incorrect: Correct use of Equation of time $\begin{aligned} & =11: 00+12 \\ & =11: 12(1) \end{aligned}$ OR Correct use of longitude correction $\begin{aligned} & =11: 00+32 \\ & =11: 32(1) \end{aligned}$ Calculation: (Local) MST $=$ Sundial time - Equation of time $=11: 00--12$ $=11: 12 \text { (1) }$ $\begin{aligned} & \text { Greenwich MST }(\mathrm{GMT})=\text { Local MST }+ \text { longitude correction } \\ &=11: 12+(8 \times 4) \\ &=11: 12+32(1) \\ &=11: 44 \end{aligned}$	2

Question number	Answer	Mark
$\mathbf{5 (a) (i i)}$	NOT A position A only - will cause a spring tide	$\mathbf{1}$
	NOT B position B only - will cause a spring tide NOT C position A and position B - will cause spring tides D position C and position D - Sun-Earth-Moon are perpendicular	

Question number	Answer	Mark
$\mathbf{5 (b)}$		2
	One mark if positions shown are incorrect, but are shown on opposite sides of the Earth (1) (Dotted line is perpendicular to the direction of the Moon) (Dotted line is a marking guide and does NOT need to be drawn to gain the mark) (L1 and L2 can be labelled either way)	

Question number	Answer	Mark
$\mathbf{6}$ (a)	A circumpolar - incorrect answer B geocentric C heliocentric - incorrect answer D synodic - incorrect answer	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{6 (b) (i)}$	Polaris / alpha (a) Ursa Minor / North star / Pole star	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{6 ~ (b) (i i) ~}$	Zenith	$\mathbf{1}$
	Allow Observer's zenith	

Question number	Answer	Mark
6 (b)(iii)		1

Question number	Answer	Mark
6 (b)(iv)	Altitude $=58$ degrees (1) (Calculation:	$\mathbf{1}$
Altitude $=90-32$ $=58)$		

Question number	Answer	Mark
$\mathbf{6 (b) (\mathbf { v })}$	Latitude = 58 (degrees) (N) (1) Allow an ecf mark - award the mark if the answer is the same as 6 (a)(iv)	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{6 (b) (v i)}$	(+) 58 degrees (1) (Calculation: Declination of $X=$ Declination of North celestial pole -32 Declination of $X=90-32$ Declination of $X=58)$	$\mathbf{1}$

Question number	Answer	Mark
6 (c)(i)	U approximately equidistant from NCP	1

Question number	Answer	Mark
$\mathbf{6 (c) (i i)}$	Altitude $=88^{\circ}(2)$	$\mathbf{2}$
	Calculation	
Evidence of $90-70=20$ degrees (1)		
	Altitude $=68+(90-70)$ Altitude $=68+20$ Altitude $=88(1)$	

Question number	Answer	Mark
$\mathbf{6 (d)}$	The asterism of The Plough	$\mathbf{1}$
	OR	

Question number	Answer	Additional guidance	Mark
7 (a)(i)	Any one from: - Streetlights - Source of artificial lighting - Satellites - Aircraft - Moon - Cities - Sun	Do NOT allow (too vague) - Lights - Skyglow	1

Question number	Answer	Mark
7 (a)(ii)	Any one from: - limiting magnitude reduced - Skies not black in photographs - Milky Way not visible - Objects look/seem dimmer - Reduces contrast - Fewer objects are visible	1

Question number	Answer	Mark
7 (a)(iii)	Any one from: - Fewer/no artificial light sources - No electricity/light bulbs - Urban areas were poorly/not lit at night - Primary source of light was candles/flame.	1

Question number	Answer	Mark
$\mathbf{7 (b) (i)}$	Any two from: - \quadCan determine what celestial objects are visible/above the horizon on a given date/time (allow shows the horizon) (1) -Can determine the rising/setting/culmination times for celestial objects (1) -Can determine the local position/orientation of celestial object (in the sky) - Can be adjusted to the time/month/year of the observation	$\mathbf{2}$

Question number	Answer	Mark
$\mathbf{7 (b) (i i)}$	Any one from: Planisphere designed for a specific latitude on Earth/star chart can be used anywhere on Earth. - Planisphere's only show part of the celestial sphere	$\mathbf{1}$

Question number	Answer	Mark
$\mathbf{8 (a) (\mathbf { i })}$	right ascension = 4 hours	$\mathbf{1}$

Question number	Answer	Mark
8 (a)(ii)	 Intersection between path taken by the star and the 6 hour line of right ascension.	1

Question number	Answer	Mark
8 (a)(iii)	8 (hours)	$\mathbf{1}$

Question number	Answer	Mark
8(a)(iv)	NOT A 02:00 - incorrect answer	
	B $\mathbf{0 2 : 3 0 \quad \mathbf { s t a r } \text { will culminate } \mathbf { 1 } \text { hour later }}$(01:30 + 1:00)	$\mathbf{1}$
	NOT C 03:00-incorrect answer	
	NOT D 03:30-incorrect answer	

Question number	Answer	Mark
$\mathbf{8 (a) (v)}$	NOT A 01:00 - the star will cross the meridian in 1 hour	$\mathbf{1}$
	NOT B 03:00-incorrect answer	
	NOT C 04:00-incorrect answer	
	meridian 23 23:00 - star last crossed the observer's	

Question number	Answer	Mark
8 (a)(vi)	NOT A 01:00 - incorrect answer B 03:00 - the First Point of Aires (Oh RA) crossed the meridian 3 hours ago. Also, $\begin{aligned} \text { LST } & =\text { HA + RA } \\ & =23: 00+04: 00 \\ & =03: 00 \end{aligned}$ NOT C 04:00 - incorrect answer NOT D 23:00 - incorrect answer	1

Question number	Answer	Mark
$\mathbf{8 (b) (i)}$	Bob is south of London (1) Bob is east of London (1)	$\mathbf{3}$
Any one of the following reasons: Bob is south of London because change/range of day lengths from Feb to May is smaller compared to London (1)	Bob is east of London because sunrise occurs earlier than London (1)	

Question number	Answer	Mark
$\mathbf{8 (b) (i i)}$	The Sun may not be visible (1) due to bad weather/obstructions/night (1)	$\mathbf{2}$
	The Sun is very bright (and should not be looked at directly) (1) thus requiring specialised equipment/filters/projection method etc. (1)	

Question number	Answer	Mark
9 (a)(i)	$1^{\text {st }}$ (January) or $2^{\text {nd }}$ (January)	1

Question number	Answer	Mark
9 (a)(ii)	Moon would appear larger / brighter than usual in the sky (1) because it is at its closest distance to Earth/perigee (1)	$\mathbf{2}$

Question number	Answer	Mark
$\mathbf{9}$ (a)(iii)		$\mathbf{3}$
	Moon in an elliptical orbit around the Earth (1) Moon at perigee (closest point to Earth) (1) Sun/Sun's rays in correct position forming a straight-line Sun-Earth-Moon (1)	

Question number	Answer	Mark
9 (b)	At winter solstice the Sun's altitude is at its greatest below the horizon / at summer solstice the Sun's altitude is at its smallest below the horizon (1)	$\mathbf{2}$
	Moon is illuminated from different angles (1)	

Question	Answer				Mark
9(c)	Level	Mark D	Descriptor		(6)
		0	rewardab	material.	
	Level 1	1-2	ks clarity c plan at ntific idea is incom e links to ures to o	empted but with limited analysis of . Generalised comments made. lete and contains basic information with lunar phase, shadows and suitable serve.	
	Level 2	3-4	me structur is given ntific ideas grate rele is adequ se, shado ervation	e. with occasional evidence of analysis of and attempts to synthesise and vant knowledge. ate and shows many links with lunar ws and how this can help or hinder the surface features.	
	Level 3	$5-6$	prehens is given ence from onstrate wledge. is wellntific rea observati selected	e and well structured. which is supported throughout by the analysis of the scientific ideas and the skills of synthesising and integrating veloped and shows a sustained line of oning which could successfully result in n of all the named features. Appropriate and correct reasons given.	
	Indicative The indicati not required below must	content ive conte d to inclu also be	guidanc below all of it edited.	not prescriptive, and candidates are Other relevant material not suggested elevant points may include:	
	Feature	Lunar Phase	Possible dates	Suitability	
	Sea of Tranquility (mare)	full	$13^{\text {th }}$	(Mare) is a flat feature which does not cast shadows. Observed due to its difference in colour. Best observed at a full moon.	
	Tycho (crater)	last quarter and/or full	$\begin{aligned} & 20^{\text {th }} \\ & \text { and/or } \\ & 13^{\text {th }} \end{aligned}$	(Crater) has height and depth and cast shadows. Best observed in shadow during last quarter. and/or Tycho has bright rays which are a difference in colour and have no height/depth. Best observed during full moon.	
	Apennine mountain range	first quarter	$6^{\text {th }}$	Mountain range has height and depth and cast shadows. Best observed at first quarter.	
	A clear and correct link between lunar phase/date and the relief of the feature being observed.				

Question number	Answer	Mark
$\mathbf{1 0}$ (a)(ii)	Orbital period $=1.9$ days (allow a range 1.8 to 2.0) (3) Calculation: $\mathrm{r}^{3}=\left(1.6 \times 10^{5}\right)^{3}\left(\mathrm{~km}^{3}\right) \quad$ (1) $\mathrm{r}^{3}=4.1 \times 10^{15}\left(\mathrm{~km}^{3}\right)$ T^{2} measured from the graph $\mathbf{3}$ $\mathrm{T}^{2}=3.8$ (days $\left.{ }^{2}\right)$ Allow a range of 3.5 to 4.1 \quad (1) $\mathrm{T}=1.9$ (days) Allow a range of 1.8 to 2.0 (1)	
Award one mark if T^{2} is determined from the graph without first calculating r^{3} i.e., $\mathrm{T}^{2}=1.6$ (days ${ }^{2}$) or $\mathrm{T}=1.26$ (days)		

Question number	Answer	Mark
$\mathbf{1 0}(\mathbf{b})(\mathbf{i})$	Measurement of the gradient (of the line of best fit)	$\mathbf{1}$
	Or Take values (from the line of best fit/table/data point) and substitute into the equation.	

Question number	Answer	Mark
$\mathbf{1 0}$ (b)(ii)	$\frac{T^{2}}{r^{3}}$ has a different constant/does not equal 0.91 (1) because Saturn has a different mass/gravitational field to Uranus (1)	$\mathbf{2}$

Question number	Answer	Mark
$\mathbf{1 0}$ (b)(iii)	Any one of the calculations for the $\frac{\text { mass of Saturn }}{\text { mass of Uranus }}$ shown:	$\mathbf{1}$
	$\frac{95 \text { (mass of Earth) }}{15 \text { (mass of Earth) }}$	
	$\frac{95}{15}$ 9.7×10^{26} 9.0×10^{25} $95: 15$	

Question number	Answer	Mark
$\mathbf{1 0 (b) (i v)}$	Constant for Saturn $=0.14\left(\times 10^{-15} \mathrm{days}^{2} / \mathrm{km}^{3}\right)(2)$ Calculation: Constant in Kepler's third law depends inversely on the mass of the central body Constant for Saturn $=\frac{\text { constant for Uranus }}{6.3}$ Constant for Saturn $=\frac{0.91\left(\times 10^{-15}\right)}{6.3}$ Constant for Saturn $=0.14\left(\times 10^{-15}\right)$	$\mathbf{2}$
	(1)	

