Mark Scheme (Results)
January 2023

Pearson Edexcel Awards
In Number and Measure (ANM20) Paper 2A

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023
Question Paper Log Number P69001A
Publications Code ANM20_2A_MS_2301
All the material in this publication is copyright
© Pearson Education Ltd 2023

NOTES ON MARKING PRINCIPLES

1 Types of mark

M marks: method marks
A marks: accuracy marks
B marks: unconditional accuracy marks (independent of M marks)
Abbreviations
cao - correct answer only
ft - follow through
isw - ignore subsequent working
SC: special case
oe - or equivalent (and appropriate)
dep - dependent

3 No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.
4 With working
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

8 Use of ranges for answers

If an answer is within a range this is inclusive, unless otherwise stated.

Question	Working	Answer	Mark	Notes
1 (a) (b)		12.7 53.4	1 1	B1 cao B1 cao
2		312.12	1	B1 cao
3 (a) (b) (c)		$\begin{gathered} 31 \\ 5832 \\ 2592 \end{gathered}$	1 1 2	B1 cao B1 cao M1 for 81 or 32 A1 cao
4		300	2	M1 for 40×7.5 NB: M0 if any ambiguity of squaring from mis-use of units etc. A1 cao
5 (a) (b)		80 240	2 2	M1 for $16+30+34$ A1 cao M1 for $16 \times 30 \div 2$ A1 cao

Question	Working	Answer	Mark	Notes
$\longdiv { 6 }$ (a) (b) (c)		$\begin{gathered} (+) 11 \\ (+) 4 \\ -36 \end{gathered}$	1 1 1	B1 cao B1 cao B1 cao
7		120	2	M1 for a method to calculate 24% of 500 either directly or by partitioning eg 500×0.24 oe or 20% as 100 and 4% as 20 with $100+20$ or 10% as 50 and 1% as 5 with $50+50+5+5+5+5$ or any equivalent method or 120 seen, then used as part of an extended method eg 620 or 380 A1 cao
8		6.5	2	M1 for $14.3 \div 2.2$ A1 cao
9		300	3	M1 for $6000 \times 2 \div 100$ oe $(=120)$ or 6120 or $6000 \times 2.5 \div 100$ oe $(=150)$ or 6150 or $2 \times 2.5 \div 100(=0.05)$ M1 for $6000 \times 2 \times 0.025$ oe or 6300 or 5700 A1 cao
10		665	2	M1 for 350×1.90 oe A1 cao

Question	Working	Answer	Mark	Notes
11		$1 \frac{1}{5}$	2	M1 for correctly writing fractions as improper fractions eg $\frac{9}{2} \div \frac{15}{4}$ or $\frac{9}{2} \times \frac{4}{15}$ or $4.5 \div 3.75$ A1 for $\frac{36}{30}$ or $\frac{12}{10}$ or $\frac{6}{5}$ or $1 \frac{1}{5}$ or 1.2 oe
12		405.35	4	M1 for $11.50 \times 35(=402.5)$ or $17.25 \times 8(=138)$ M1 for $27.05+108.10(=135.15)$ or subtraction of both or for " $402.5 "+$ " 138 " $(=540.5)$ M1 for complete method eg " $402.5 "+" 138 "-" 135.15 "$ oe A1 cao
13		95 to 95.1	3	M1 statement $\pi \times r \times r$ oe or sight of $\pi \times 11 \times 11(=380 \ldots)$ M1 for $\pi \times 5.5^{2}$ or $\pi \times 30.25$ A1 for an answer in the range 95 to 95.1
14		$\begin{aligned} & 28 \\ & 50 \end{aligned}$	3	M1 for finding a scaling factor eg $\frac{56}{140}, \frac{10}{25}(=0.4), \frac{140}{56}, \frac{25}{10}(=2.5)$ oe or uses angles as sf eg $\frac{140}{70}(=2)$ or $\frac{125}{25}(=5)$ oe or $56 \times \frac{360}{140}$ or $10 \times \frac{360}{25}$ A1 for red as 28 A1 for blue as 50

Question	Working	Answer	Mark	Notes
15		90	3	M1 for listing at least 3 multiples of one number (eg 3 from 15, 30, 45, $60,75,90$ or 3 from 18, 36, 54, 72, 90) M1 for factor trees showing at least two prime factors of both or one complete factor tree for 15 or 18 M1 for listing at least 3 multiples of each number. M1 for complete factor trees for 15 and 18 or showing 3×5 and $2 \times 3 \times 3$ $($ Could be shown on a Venn diagram $)$ or for $5 \times 3 \times 2 \times 3$ A1 cao
16		104	4	M1 for division of the shape into at least one rectangle and one triangle (eg by dividing shape up using lines, or division of whole 15 by 12 rectangle into at least one rectangle and one triangle); M1 for an appropriate rectangular area eg $8 \times 5(=40)$ or $8 \times 3(=24)$ or $8 \times 8(=64)$ or $4 \times 3(=12)$ or $3 \times 12(=36)$ or $15 \times 12(=180)$ or $5 \times 4(=20)$ or $4 \times 7(=28)$ or $4 \times 12(=48)$ or a triangular area eg $7 \times 8 \div 2(=28)$ M1 for a complete method eg " $28 "+" 64 "+" 12 "$ or " $180 "-" 28 "-" 48 "$ A1 cao
17		12	3	M1 for $550-484(=66)$ or $\frac{484}{550}(=0.88)$ or $\frac{484}{5.5}(=88)$ oe M1 for $\frac{" 66 "}{550}$ or $1-" 0.88 "(=0.12)$ or $100-" 88 "$ A1 cao

Question	Working	Answer	Mark	Notes
18		2307 to 2310	3	$\mathrm{M} 1 \pi \times 7^{2}(=153.9$ to 154$)$ or $\pi \times r^{2} \times h$
				M1 for $\pi \times 7^{2} \times 15$

