Mark Scheme (Results)

Summer 2022

Pearson Edexcel Level 3 Award In Algebra (AAL30) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P66325A
Publications Code AAL30_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

NOTES ON MARKING PRINCIPLES

1 Types of mark

M marks: method marks
A marks: accuracy marks
B marks: unconditional accuracy marks (independent of M marks)
Abbreviations

cao - correct answer only	ft - follow through
isw - ignore subsequent working	SC: special case
oe - or equivalent (and appropriate)	dep - dependent

e - or equivalent (and appropriate)
indep - independent

3 No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.
4 With working
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

5 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

6 Ignoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

7 Parts of questions
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.
8 Use of ranges for answers
If an answer is within a range this is inclusive, unless otherwise stated.

PAPER: AAL30_01				
Question	Working	Answer	Mark	Notes
$1 \quad \text { (a) }$		$2 y^{2}+3 y-9$	2	M1 for expanding bracket to obtain 4 terms with all 4 correct without considering signs or for 3 terms out of 4 correct with correct signs, eg $2 y^{2}+6 y-3 y-9$ A1 for $2 y^{2}+3 y-9$
(b)		$4+20 x+25 x^{2}$	2	M1 for 3 terms out of 4 correct A1 for $4+20 x+25 x^{2}$
(c)		$2 r^{4}$	2	M1 for $8^{\frac{1}{3}}(=2)$ or $r^{\frac{12}{3}}\left(=r^{4}\right)$ A1 cao
(d)		$t^{-\frac{11}{4}}$	1	B1 $t^{-\frac{11}{4}}\left(\right.$ accept $\frac{1}{t^{\frac{11}{4}}}$ or $\left.\left(\frac{1}{t}\right)^{\frac{11}{4}}\right)$
2		$x= \pm \sqrt{\frac{2-w}{w-3}}$	3	M1 for correct first step eg $w\left(x^{2}+1\right)=3 x^{2}+2$ M1 (dep M1) for isolating terms in x^{2} eg $w x^{2}-3 x^{2}=2-w$ A1 oe
3	$\frac{--2 \pm \sqrt{(-2)^{2}-4 \times 3 \times-6}}{6}$	$\frac{2 \pm \sqrt{76}}{6}$	2	M1 for stating the quadratic formula, may be implied by correct substitution into formula A1 oe, eg $\frac{1 \pm \sqrt{19}}{3}$

PAPER: AAL30_01				
Question	Working	Answer	Mark	Notes
4		Region drawn	5	M1 for drawing $x=-2$ and $y=1$ M1 for drawing $2 x+3 y=6$ M1 for drawing $y=x+4$ A2 for shading required region (A1 (dep M2) for shading correctly for 3 inequalities)
$5 \quad \text { (a) }$ (b)		Circle drawn Tangent drawn at $(0,7)$	2 1	M1 for a circle centre $(0,0)$ or radius 7 A1 for a circle centre $(0,0)$ and radius 7 B1 for tangent drawn at $(0,7)$ or ft their circle
6 (a) (b)(i) (ii)		$\begin{gathered} (x+3)(x-2) \\ -3<x<2 \end{gathered}$	2 1 2	M1 for isolating terms in y or critical value of 3 A1 cao B1 M1 for critical values of -3 and $2, \mathrm{ft}(x+a)(x+b)$ in (b)(i) A1 for $-3<x<2$ oe, $\mathrm{ft}(x+a)(x+b)$ in (b)(i)

PAPER: AAL30_01				
Question	Working	Answer	Mark	Notes
$7 \quad \text { (a) }$		$y=\frac{3}{4} x$	1	$\text { B1 } y=\frac{3}{4} x \text { or } 4 y=3 x \text { oe }$
(b)		$-\frac{5}{2}$	2	M1 for correct use of gradient of perpendicular to the line with gradient $m=-\frac{1}{m}$, eg $\frac{-1}{\frac{2}{5}}$
				$\text { A1 oe for }-\frac{5}{2} \text { or }-2 \frac{1}{2} \text { or }-2.5$
8		2 real and equal supported	2	M1 for $(-12)^{2}-4 \times 9 \times 4$ oe A1 for statement from $\left(b^{2}-4 a c=\right) 0$
9 (a) (b)		$3 x^{2} y(2 y-3 x)$	2	M1 for a correct partial factorisation with a product of at least 3 terms, eg $3 x\left(2 x y^{2}-3 x^{2} y\right)$ A1 for full and correct factorisation
		$p^{2}(p-q)(p+q)$	2	M1 for $p^{2}\left(p^{2}-q^{2}\right)$ or $\left(p^{2}-p q\right)\left(p^{2}+p q\right)$ or $p(p-q)\left(p^{2}+p q\right)$ or $p\left(p^{2}-p q\right)(p+q)$ A1 oe
10 (a)		3, 4	2	B2 for 3 and 4 or for $(x+3)^{2}+4$ (B1 for 3 or 4 , may be seen in the working, eg $(x+3)^{2}+22$)
		$(-3,4)$	1	B1 ft (a)

PAPER: AAL30_01				
$$	Working	Answer	Mark	Notes
		$7 n-3$	2	M1 for $a+(n-1) d$ oe (may be seen with substituted values) eg $4+7(n-1)$ A1 cao
(b)		15	1	B1 cao
(c)		35050	2	M1 for substitution into $\frac{1}{2} n(2 a+(n-1) d)$, $\operatorname{eg} \frac{1}{2} \times 100(2 \times 4+(100-1) \times 7)$ or for substitution into $\frac{1}{2} n(a+l)$, eg $\frac{1}{2} \times 100(4+697)$ A1 cao
$12 \quad \text { (a) }$		$v=\frac{240}{t}$	3	M1 $v=\frac{k}{t}$ oe, or $v \propto \frac{1}{t}$ may be implied by substitution M1 for substitution in $v=\frac{k}{t}$ to find k, eg $60=\frac{k}{4}$ A 1 for $v=\frac{240}{t}$
(b)		3	2	M1 for substituting $v=80<\mathrm{ft} v=\frac{k}{t}$, eg $80=\frac{240}{t}$ A1 ft use of $v=\frac{k}{t}$
(c)		Graph sketched	1	B1
13 (ii)		$\begin{array}{r} -\frac{5}{6} \\ -2 \end{array}$	1 1	$\begin{aligned} & \text { B1 for }-\frac{5}{6} \text { or }-0.8 \dot{3} \\ & \text { B1 cao } \end{aligned}$

PAPER: AAL30_01				
Question	Working	Answer	Mark	Notes
14		$\frac{5}{6}$	3	M1 for a complete substitution eg $20=\frac{12(6 h-3)}{3}+12$ or for re-arranging as far as $3(V-f)=f(w h-3)$ oe M1 for dealing with the fraction eg $24=12(6 h-3)$ or for making h the subject, eg $h=\frac{3 V}{f w}$ oe A1 for $\frac{5}{6}$ or $0.8 \dot{3}$
15		Graph sketch	4	B1 for asymptote $x=2$ or asymptote at $y=0$ or y intercept at $\left(0,-\frac{1}{2}\right)$ shown on the graph B1 for 2 of asymptote $x=2$, asymptote at $y=0$, y intercept at $\left(0,-\frac{1}{2}\right)$ shown on the graph M1 for correct shape A1 for fully correct graph showing position of asymptotes and intersection with y-axis.
16	$\begin{aligned} & x+1=3 x^{2}+6 x-1 \\ & 3 x^{2}+5 x-2=0 \\ & \begin{array}{l} (3 x-1)(x+2)=0 \end{array} \\ & \text { OR } \\ & \begin{array}{l} x^{2}=(y-1)^{2} \\ y=3\left(y^{2}-2 y+1\right) \\ \quad+6(y-1) \\ \quad-1 \end{array} \\ & \quad \begin{array}{l} 3 y^{2}-y-4=0 \\ (3 y-4)(y+1)=0 \end{array} \end{aligned}$	$\begin{gathered} x=\frac{1}{3}, y=\frac{4}{3} \\ x=-2, y=-1 \end{gathered}$	4	M1 for method to eliminate one variable to form one quadratic equation, eg substitute $y=x+1$ or $x=y-1$ M1 for writing equation in the form $a x^{2}+b x+c=0$ or $a y^{2}+b y+c=0$, eg $3 x^{2}+5 x-2(=0)$ or $3 y^{2}-y-4(=0)$ A1 $x=\frac{1}{3},-2$ or $y=\frac{4}{3},-1$ A1 for $x=\frac{1}{3}, y=\frac{4}{3}$ and $x=-2, y=-1$

PAPER: AAL30_01				
Question	Working	Answer	Mark	Notes
$17 \quad \text { (a) }$		$-3+\sqrt{3}$	3	B1 for using $\sqrt{12}=2 \sqrt{3}$ or $\sqrt{3} \sqrt{12}=6$
				M1 for expanding bracket to obtain 4 terms with all 4 correct without considering signs or for 3 terms out of 4 correct with correct signs, eg $15-9 \sqrt{3}+5 \sqrt{12}-3 \sqrt{3} \sqrt{12}$ A1 for $-3+\sqrt{3}$
(b)		$\frac{11-\sqrt{13}}{12}$	3	M1 for multiplying by $\frac{1+\sqrt{13}}{1+\sqrt{13}}$ oe M1 for rationalising to $\frac{2-13+2 \sqrt{13}-\sqrt{13}}{1-13}$ oe A1 for $\frac{11-\sqrt{13}}{12}$
18		$15 x+4 y-13=0$	3	M1 for a method to find the correct gradient, eg $\frac{7--8}{-1-3}\left(=-\frac{15}{4}\right)$ M1 for a correct equation in any form, $\text { eg } y=-\frac{15 x}{4}+\frac{13}{4} \text { or } y--8=-\frac{15}{4}(x-3)$ A1 for $15 x+4 y-13=0$ oe in correct form

PAPER: AAL30_01					
Question	Working		Answer	Mark	Notes

Question 4

Question 12

Question 15

Question 20(a)

Question 20(b)

