Pearson Edexcel

Mark Scheme (Results)

January 2019

Pearson Edexcel Level 3 Award
In Algebra (AAL30)
Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code AAL30_01_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

NOTES ON MARKING PRINCIPLES

1 Types of mark

M marks: method marks
A marks: accuracy marks
B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

```
cao - correct answer only ft - follow through
isw - ignore subsequent working SC: special case
oe - or equivalent (and appropriate) dep - dependent
```

indep - independent

No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Use of ranges for answers

If an answer is within a range this is inclusive, unless otherwise stated.

Question	Working	Answer	Mark	Notes
1 (a)		$(a+c)(b-d)$	2	M1 for $b(a+c)$ and $-d(a+c)$ or $a(b-d)$ and $c(b-d)$ oe A1 for $(a+c)(b-d)$ oe
(b)		$3 r^{2} t\left(4-3 t^{2}\right)$	2	B2 (B1 for a correct partial factorisation which is a product of 3 or 4 factors)
2		Correct region indicated	5	M1 for drawing $y=2$ and $y=3 x$ correctly M1 for drawing $5 x+3 y=15$ correctly M1 for drawing $2 y-x=1$ correctly A2 for correctly shading required region (A1 for correct shading for 3 inequalities)
3		$x \leqslant-11$	3	M1 for dealing with the fractions, eg 6($x-3) \geqslant 4(1+2 x)$ or $\frac{12}{4}(x-3) \geqslant \frac{12}{6}(1+2 x)$ M1 (dep) for isolating terms in x, eg $-22 \geqslant 2 x$ or showing -11 as the critical value A1 oe

Question	Working	Answer	Mark	Notes
4 (a)	$a=1, b=-2, c=-1$ $\frac{--2 \pm \sqrt{(-2)^{2}-4 \times 1 \times-1}}{2 \times 1}$ $=\frac{2 \pm \sqrt{8}}{2}$ $x^{2}+2 x+4 x+8=4 x^{2}+2 x+6 x+3$ $3 x^{2}+2 x-5=0$ $(3 x+5)(x-1)=0$	$\frac{2 \pm \sqrt{8}}{2}$	2	M1 for correct substitution into formula
(b)	$-\frac{5}{3}, 1$	4	A1 for $\frac{2 \pm \sqrt{8}}{2}$ or $1 \pm \sqrt{2}$	
(c)		M1 for a correct expansion, eg $x^{2}+2 x+4 x+8$ M1 for expressing equation in the form $\mathrm{f}(x)=0$, eg $3 x^{2}+2 x-5=0$ oe M1 for correct method to solve $3 x^{2}+2 x-5=0$ oe, eg $(3 x+5)(x-1)(=0)$ A1 for $-\frac{5}{3}, 1$ oe $($ must be in exact form $)$		
B1 cao				

Question	Working	Answer	Mark	Notes
(a)		$2 p^{-\frac{1}{2}}$	2	B2 for $2 p^{-\frac{1}{2}}$ oe (B1 for $2 p^{n}$ where $\mathrm{n} \neq-\frac{1}{2}$ or $a p^{-\frac{1}{2}}$ oe where $\left.a \neq 2\right)$
(c)		$u^{\frac{3}{2} m^{\frac{5}{2}}}$	2	M1 for correct first step, eg $\frac{u^{2}}{m^{\frac{1}{2}} \times \frac{m^{3}}{u^{\frac{1}{2}}}}$

Question	Working	Answer	Mark	Notes
(a) (b)		$\begin{gathered} \hline-471 \\ -94700 \end{gathered}$	2 2	M1 for $a+(n-1) d$ oe (may be seen with substituted values), eg $24+99 \times-5$ or $29+100 \times-5$ A1 cao M1 for substitution into $\frac{1}{2} n(2 a+(n-1) d)$ $\begin{aligned} & \text { or } \frac{1}{2} n(a+l) \\ & \text { eg } \frac{1}{2} \times 200(2 \times 24+(200-1) \times-5) \\ & \text { or } \frac{1}{2} \times 200(24+-971) \end{aligned}$ A1 cao
$8 \quad(a)$		25	2	$\text { M1 for }(2 \sqrt{5})^{2}+(-\sqrt{5})^{2} \text { or }(2 \sqrt{5})^{2}=20 \text { or }(-\sqrt{5})^{2}=5$ A1 cao
(b)		$-4+4 \sqrt{5}$	2	M1 for expanding $(2 \sqrt{5}+2)(-\sqrt{5}+3)$ to obtain 4 terms with all 4 correct without considering signs or for 3 terms out of 4 correct with correct signs A1 for $-4+4 \sqrt{5}$
(c)		$\frac{1}{3}$	2	M1 for simplifying to $\sqrt{5} \div 3 \sqrt{5}$ oe or rationalising to $\frac{20-10-10+5}{20-5}$ oe A1 for $\frac{1}{3}$ oe

Question	Working	Answer	Mark	Notes
14	$\begin{aligned} & x^{2}+3 x+2=x+2 \\ & x^{2}+2 x=0 \\ & x(x+2)=0 \\ & x=0, x=-2 \\ & y=2, y=0 \end{aligned}$	0,2 and $-2,0$	4	M1 for substitution of $y=x+2$ into the quadratic equation oe to obtain equation in one variable M1 for $x^{2}+2 x(=0)$ oe A1 $x=0,-2$ or $y=2,0$ A1 for $x=0, y=2$ and $x=-2, y=0$
$15 \quad \text { (a) }$	Translation by $\binom{-45}{0}$	Sketch graph	2	M1 for translation parallel to x-axis A1 for correct curve sketched in interval $-360 \leqslant x \leqslant 360$
(b)	$\text { Translation by }\binom{0}{-2}$	Sketch graph	2	M1 for translation parallel to y-axis A1 for correct curve sketched in interval $-360 \leqslant x \leqslant 360$
$16 \quad \text { (a) }$		$x \leq-1, x \geq 5$	3	$\begin{aligned} & \text { M1 for writing in form } x^{2}-4 x-5(\geq 0) \\ & \text { or }-x^{2}+4 x+5(\leq 0) \\ & \text { M1 for establishing critical values, } 5 \text { and }-1 \\ & \text { A1 cao } \end{aligned}$
(b)		$-40<b<40$	2	$\begin{aligned} & \text { M1 for use of } b^{2}-4 a c<0 \text { or } b^{2}<4 a c \text { or } b<40 \\ & \text { or }-40<b \\ & \text { A1 for }-40<b<40 \end{aligned}$

Question	Working	Answer	Mark	Notes
17 (a) (b)		$\begin{gathered} (2 x-7)^{2}-49 \\ (3.5,-49) \end{gathered}$		B1 $a=7$ B1 $b=49$ B1 ft completed square in (a)
18 (a)		Graph sketch	3	M1 for parabola with symmetry about a line $y=a$ M1 for a single y intercept labelled at 2 or for a single x intercept labelled at 4 A1 fully correct graph drawn with all labels
(b)		Graph sketch	4	B1 for asymptote of $x=-5$ B1 for y intercept at ($0, \frac{1}{5}$) M1 for correct shape A1 for fully correct graph

Question 2

Question 15(a)

Question 18(a)

Question 18(b)

