Examiners’ Report/
Lead Examiner Feedback
Summer 2017

BTEC Level 3 Nationals in Sport and
Exercise Science
Unit 13: Nutrition for Sport and Exercise
Performance (31824H)
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your learners at: www.pearson.com/uk
Grade Boundaries

What is a grade boundary?
A grade boundary is where we set the level of achievement required to obtain a certain grade for the externally assessed unit. We set grade boundaries for each grade, at Distinction, Merit, Pass and Near Pass.

Setting grade boundaries
When we set grade boundaries, we look at the performance of every learner who took the external assessment. When we can see the full picture of performance, our experts are then able to decide where best to place the grade boundaries – this means that they decide what the lowest possible mark is for a particular grade.

When our experts set the grade boundaries, they make sure that learners receive grades which reflect their ability. Awarding grade boundaries is conducted to ensure learners achieve the grade they deserve to achieve, irrespective of variation in the external assessment.

Variations in external assessments
Each external assessment we set asks different questions and may assess different parts of the unit content outlined in the specification. It would be unfair to learners if we set the same grade boundaries for each assessment, because then it would not take accessibility into account.

Grade boundaries for this, and all other papers, are on the website via this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Nutrition for Sport and Exercise Performance: Unit 13

<table>
<thead>
<tr>
<th>Grade</th>
<th>Unclassified</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Boundary Mark</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>
Introduction

This was the first series of the new specification, and therefore, the first time that this unit has been externally assessed. The method of external assessment was by a task based approach.

It was clear from the learner's responses that centres have prepared their learners exceptionally well for this external assessment and should be commended for their ability to so quickly adapt to the assessment mode. Learner's responses were generally well prepared and coherent in relation to many aspects of the specification.

The question paper followed the format identified in the sample assessment material with a nutritional programme provided as part A and then part B contained unseen information regarding the client details, their sport and the phase of the event that they were in. There are three activities based on the part A and part B information each of which is marked using a levels based approach, where the overall quality of the response is considered rather than identifying individual marking points.

Introduction to the Overall Performance of the Unit

This was the first time that learners had undertaken this type of assessment and the responses provided showed a range in attainment. The scripts showed that learners could organise their time to assess the information provided in the part B and then provide structured and coherent answers in the two and half hours of allocated time.
Individual Questions

Activity 1

In this activity learners had to interpret the nutritional programme for Brian in relation to his health and well being.

Good responses provided nutritional analysis of the percentage of macro nutrients consumed on a daily basis and compare these to recommended amounts:

This information was then related to the client details which included levels of detail such as:

- Body Mass Index BMI = 64/3.24 = 19.7 and compared to the normal range
- BIA = 9% compared to the normal range
- The client's Basal Metabolic rate in relation to activity levels using the Harris-Benedict equation.

The balance of food groups (grains, fruit and vegetables, protein, dairy, fats and sweets was discussed by some learners in relation to the nutritional analysis and/or the Food pyramid and/or the Eatwell plate.

The impact of food preparation on the nutritional composition of food was also discussed in relation to macronutrient content and impact on health. Fluid intake was referred to in relation to recommended daily amounts and types of fluids consumed by Brian.

As the focus of this question was on health and wellbeing, learners who did well in this activity did include information how Brian's health and wellbeing could have been affected from his nutritional programme.

Lastly, the factors affecting digestion and absorption of nutrients and fluids should have been commented on in relation to the nutritional programme for the individual with some reference to the timings of food intake and activity levels and timings of the individual

Learner’s responses gained marks in one of the four mark bands:

Mark band 1: 1-5 marks
Mark band 2: 6-10 marks
Mark band 3: 11-15 marks
Mark band 4: 16-20 marks
This response was placed in Band 3 and awarded 14 marks out of 20

1 Interpret Brian’s current nutritional programme, in relation to nutritional intake for health and wellbeing.

Brian’s BMI rests at about 19.7 suggesting he is underweight but this could just be down to the fact he is training for a marathon. His BMR is 1684.92 but then because of his high activity level he should be consuming around 2906 kcal.

The RDA for carbs for a normal person is 9-13% between 225 and 325g. For most of the week he is consuming this area within the amount everyday. However on a Sunday he is consuming over this amount which isn’t good considering it is his rest day. Some days when he is training he is also consuming below the RDA. On the other days and especially on the two rest days he is consuming a lot more than the RDA.

The RDA of protein is between 46 and 56g. Everyday – including rest days Brian is consuming way over what is recommended and this is bad especially on the rest days because if the protein isn’t being used then it’s just going to get stored as fat!

Carbs: carbs take up around 50-60% of calorie

(20) 14 marks
intake. They help to supply energy for the body to function and they have to be broken down during digestion to become glucose. Every day Brian consumes either bread, pasta or potatoes—these are all forms of carbohydrates and help to provide energy.

Fats: fats should take up around 30% of calorie intake, as they also supply energy to the body. Most fats come from animal sources which he consumes every day. Other fats come from things such as fat in noodles, chocolate cake, chocolate bars, and ice cream. These things make the diet a lot less healthy.

Protein: protein should make up around 10-20% of calorie intake depending on the exercise. Protein helps to rebuild, repair and provide fuel. Things such as chicken, eggs, salmon, milk and protein bars—which he consumes one of these things everyday help to repair his body after exercising.

Fluid: it is recommended that someone drinks 2.5-3 liters a day. This helps to regulate body temperature and avoid dehydration. Brian drinks both isotonic and hypertonic sports drinks everyday. Isotonic helps to rehydrate and are most likely consumed during exercise. Hypertonic supply more energy and are most likely consumed during or after Brian's activity exercise.

Digestion is the breaking down of food into individual nutrients. Fluids that contain low levels of sugar and fibre are absorbed quicker. We can see that on the Monday Brian drinks two glasses of fruit juice but we don't know when and this could have an effect on his exercise. Blood flow is directed to the stomach after eating.
however if exercising, the blood flow is redirected to
the working muscles. This can then cause stomach
cramps or sickness. On each day Brian has
spaced out his exercise and meals well meaning
any food should be digested by the time he exercises.
Brian has used multiple preparation methods when
making up his meals. He has used processed, baking,
grilling and roasting. Most of these methods are the un
healthy options: Both frying and roasting add fat,
processed foods have been changed and had salt added
to it (ham) but baking (pasta bake) doesn’t add any
fat and is the healthiest option he could has
chosen.

On Brian’s nutritional programme he has good
and bad days. One of the good days would be Saturday. He is however over the recommended calorie intake but on the other hand he does a 35km run. This is quite a long distance and therefore is going to need a lot of energy to keep going. This high calorie intake would mean give him that energy he needs.

One of Brian’s bad days would be Sunday. He eats way over the recommended calorie intake and then doesn’t do any exercise. This would be especially bad if the marathon was then
on the monday because he has consumed all
The response includes correct BMR calculations with additional calorie intake related to activity levels. However, an incorrect BMI figure has been presented, it should be 19.7 rather than 1.97 so the decimal point appears to have been placed incorrectly.

The learner has provided a good analysis of the recommended daily amounts of each macronutrient and compared that to the quantities consumed in the nutritional programme. Fluid intake has been analysed and the types of drink consumed accurately discussed in relation to their nutritional benefits.

The response however does not provide any analysis in terms of the impact of the diet on the client’s health and wellbeing. This means that the learner has not been able to achieve marks in the highest mark band and this response has been awarded 14 marks.
1 Interpret Brian's current nutritional programme, in relation to nutritional intake for health and wellbeing.

Brian's nutritional programme is suited to his event but changes can still be made to be able to enhance his performance. Brian's BMI works out to 27.1 but it doesn't take into account muscle, but his event doesn't require much muscle as it is an endurance event. The greatest amount of calories burnt at rest (BMR) is 1684.92 and while exercising it would need to burn 2906.487.

Brian's worst day is Sunday. He takes in a high amount of protein and fats but doesn't do any exercise, with fats this can cause the effect of adding on weight as fat will not be turned into energy. The fluids that Brian drinks is sports drinks. It doesn't specify which one he has drunk but there is 3 types: hypertonic, hypotonic and isotonic. Hypertonic is consumed after a work out as it can give a boost of energy. Isotonic is preferred for
Long distance runners as it replace fluids lost through sweating and gives a boost of energy. Another bad thing about Friday is the way food is prepared, he has fried some of the food meaning that the food has additional fat added to it.

Throughout Brain's diet he seems to be drinking the right amount of water meaning that he is very well hydrated. If this wasn't the case dehydration would occur meaning that blood plasma could be lost affecting the blood flow. Brian, since he is doing a lot of exercise it would mean that his carbohydrate intake must be 612. He doesn't hit this requirement for any of the days. This could mean that he lacks energy when it comes to the event. As a long distance runner would need lots of energy to run the full distance.
This response only achieved 8 out of 20 marks. Whilst there is good analysis at the start of the response in relation to calorie intake and BMR for the client, the level of analysis of macronutrient intake is very limited in relation to stating that the client has consumed high quantities of protein and fat on Sunday and insufficient carbohydrate intake throughout the week, which is correct. Accurate impacts to health are identified, including the effect of food preparation on the nutritional composition of foods.

The response is focused and does have some relevance to the requirements of health and wellbeing for this client, however, as the response is relatively brief it does not contain sufficient depth of analysis to move outside of grade band 2.
Activity 2

For this activity, learners needed to focus on the marathon event and the nutritional demands required for an endurance event as well as any nutritional strategies that could be used to support achievement in running a marathon.

On the whole, learners did struggle with this question and many provided daily modifications to improve the client's diet for health and well being rather than concentrating on modifications that were specific to the clients sporting event.

Learners were expected to discuss the nutritional programme in relation to carbohydrate intake to take into account the RDA for an endurance athlete - moderate to heavy/heavy = 8 – 10 g per kg which would work out at 512 - 640 g per day for Brian.

Nutritional strategies are provided in the unit content in learning Aim D. It is therefore expected that learners will select an appropriate strategy for the client based on their event. In this assessment, carbohydrate loading/glycogen loading would be expected to be included in the learner's response in relation to types of foods consumed, quantity and timings of intake including tapering activity levels prior to the event in order to maximise glycogen loading. Very few learners did actually discuss this in any detail and many if they did include this strategy just provided an outline as to what the regime involved.

Good responses to this question did include supplements to support nutritional strategies for a marathon runner such as energy gels, glucose tablets or sports drinks for carbohydrate and electrolyte replacement. Some learners did also comment on the caffeine intake relating this to mobilization of fatty acids as a fuel source which was good. Very few learners discussed beetroot juice or vitamin supplements as supplements to support a marathon runner which would have gained credit based on the clients nutritional programme and sporting event.

Learner's responses gained marks in one of the four mark bands:

Mark band 1: 1-5 marks
Mark band 2: 6-10 marks
Mark band 3: 11-15 marks
Mark band 4: 16-20 marks

To gain marks in mark band 4 the response had to include information on nutritional strategies rather than just modification of the nutritional programme to increase carbohydrate intake as the activity clearly states that the modification of the programme needs to be based on nutritional strategies in relation to the individuals sports event.
2 Modify the nutritional programme, based on nutritional strategies, in relation to Brian's sports event.

Brian is training for a marathon which is around 26 miles long. For him to be able to run the entire distance he needs to change some things in his diet. First of all he needs to decide on better preparation methods; instead of roasting or frying he could try grilling or steaming as most of the fat gets removed. So far Brian isn't getting his 5-a-day and should change the chocolate cake and the chocolate bars to an apple or an orange.

Brian should next consider some nutritional strategies, these could be something like carbo-loading. This strategy allows the athlete to maximise his carb stores & prior to the event. If Brian was to do this then he should begin it four days before the event. Brian already uses a lot of protein bars in his diet and so should avoid increasing his protein intake because if he then can't use up the extra protein it will get stored as fat which will then have a negative effect on his performance in the marathon. A marathon runner that wants to get a quick time would need to be quite light and so weight loss may be a strategy Brian could try. Although his BMI is already very low (9%) so it wouldn't necessarily be recommended.
Brian could also try some supplements. He already consumes a lot of tea and sports drinks which have caffeine in them. The caffeine enhances endurance, which is perfect for a marathon runner; it also increases alertness, which is ideal for at the start of the race and it also improves mobilisation of fatty acids so fat can be used for energy. Brian could consume more healthy meat and fish as these contain creatine. Brian could consume less little bit less meat and fish as these contain creatine, which increases muscle mass which leads to weight gain and this would hinder his performance. He could add in some energy gels which could be used before he exercises as these are mostly used by endurance athletes to spare glycogen stores. They are high in carbs but also low in protein and fat meaning they are easy to consume and don't effect the sports person in a more negative way. Another supplement that Brian could use could be beetroot juice. Beetroot juice improves aerobic endurance which means he will find it easier to continue running throughout the entire marathon. It also causes vasodilation at the working muscles which increases the bloodflow, increases the oxygen and nutrients getting to your muscles and increases the amount of nutrients getting to the working muscles.

When training is concerned, Brian could change when in the mornings he trains and when he eats breakfast. Most mornings he trains at around 5:30 am or 6 am.
The response is entirely relevant to the individual’s sporting event and the justifications for the modifications are all related to marathon running performance. The response includes a high level of detail on supplements for endurance running with a good range of supplements discussed. However, the information relating to carbohydrate loading is limited in places – more depth in this section of the response would have provided sufficient knowledge and understanding to gain full marks for this activity.
Some carbohydrates and some more carbohydrates
based food like rice, wheat and pasta for his
slow-releasing energy.

The changes I will make to Brian's dinners are
to replace the pizza, ice cream, battered fish and
chips to healthier options like red meat foods
for iron, vegetables such as carrots and asparagus
broccoli, beets and parsnips as these will
reduce the amount of fat that Brian has in his
body which will help his performance in his
event.

For the body, could also change the milk to
semi-skimmed as it has not been specified.
Change the cornflakes to bran-flakes and just completely
get rid of the scrambled egg on toast and change
it to strawberries, blueberries and 2 slices of
brown-bread toast.

Lunch I would change the pot noodle and
chocolate cake to grilled salmon, pasta
and asparagus because the salmon and pasta
are both sources of protein and carbohydrates which
brain needs and the asparagus is a
vegetable that Brian needs. I will also
add to his menu as an addition.
The response concentrates on how to improve the nutritional programme for health and wellbeing rather than related to the clients sporting event and therefore can only be placed in mark band 1. To gain marks in higher grade bands the response has to demonstrate some relevant to the individuals sporting event.
Activity 3

In Activity 3, learners had to focus on Part B of the case study and recommend nutritional guidance for the individual in relation to the individual based on the phase of the event that the individual is taking part in.

The phase of the event is stated as ‘pre-event’. This did result in some mixed responses as the timeframes for pre-event are not stated in the unit content. Therefore, responses related to pre-event timelines being up to a week before the event, or on the day of the event, were given credit.

The part of the specification that this activity relates to is D3 – Nutritional intake during different phases of the event and related to the following content:

- Types of food to be consumed and timings:
- Fluid intake
- Supplements where appropriate.

For a marathon the key areas learners were expected to write about included:

- Ensuring glycogen stores are well stocked, ensure blood glucose levels are stable, ensure the body is well hydrated
- Types of food to be consumed and timings for on the day of the event were:
 - 3-4 hours Low Glycemic Index foods and high carbohydrate content meal prior to the event 150-300g (3-4 g per kg body weight)
 - High Glycemic carbohydrate snack 60-30 mins prior to competition (70g CHO)
 - Fluid intake to ensure the individual was fully hydrated and supplements that could have been used in clued: caffeine, energy gels, glucose tablets and beetroot juice

Responses related to carbohydrate loading were also given credit but had to include the timings of food intake, types of food and carbohydrate quantity to be discussed to still meet the area of the specification being assessed.

Learner’s responses gained marks in one of the four mark bands:

- Grade band 1: 1-3 marks
- Grade band 2: 4-7 marks
- Grade band 3: 8-10 marks
3 Recommend nutritional guidance for Brian based on his phase of training.

Brian is in the pre-event phase of training and so in order for him to prepare for the marathon he needs to keep in mind his scores and timings.
So around 2-3 hours before his event he needs to ensure that his glycogen levels are well stocked; if not then he isn't going to be able to keep going through the whole marathon. If glycogen glycogen levels are low then he could consume some pasta - but he must give this time to digest otherwise it is going to cause stomach cramps. He must then check he is well hydrated - if he isn't then he won't be able to regulate his body temperature meaning he won't be able to sweat and therefore meaning he will get dehydrated a lot quicker. To avoid this Brian could drink a lot of water and energy drinks beforehand. This then means he will be hydrated for the marathon but then his blood glucose levels will also be stable and ready to produce the energy he needs to run the marathon. He should definitely avoid any fat or protein because they take too long to digest, meaning if they were to consume something high in
protein or fat then a few minutes into the marathon he would get stomach cramps and could possibly be sick meaning he cannot continue with the race. With his nutritional programme in mind, he should attempt to not consume the protein bars before the marathon and even before any training. Around 3-4 hours before the event he should consume a meal that is high in carbohydrates; this will also help to restore his glycogen levels. Finally another way to for him to stay hydrated would be to sip water in the two hours before the event - this will help to avoid dehydration but also help to avoid hyperhydration which is where you take on too much fluid.

The response includes timings and types of foods but no reference to glycemic index is made. The response does however include information on factors affecting digestion and absorption in relation to types of foods that should be eaten and when. Fluids and hydration is covered in detail as well as the impact of being dehydrated for a marathon runner which shows specific relevant to the individuals sporting event.
3 Recommend nutritional guidance for Brian based on his phase of training.

Brian has only one week before the marathon so he needs to make sure he has enough energy for the run to do this he needs to consume mostly carbohydrates in large quantities so that his energy stores can keep on increasing and that he doesn’t use it all in training, Brian will also need to eat more protein because he will be resting more before the marathon and the protein will repair his muscles and will help reduce the chance of injury. Also he will have to drink lots of water and isotonic drinks because he will need to be well hydrated and stock up on carbs because he will lose a lot of fluids during the run and
The response demonstrates limited relevance to the pre-event phase of training with just reference to having enough energy and relating this to carbohydrate intake. No reference to factors affecting digestion or absorption are included in the response either.
Summary

Based on their performance on this paper, learners should:

- Read and analyse the nutritional programme in relation to macronutrient content.
- Research any foods that they are not familiar with to find out the nutritional content and how food preparation may affect the nutritional composition of foods.
- Be prepared to carry out calculations in part B in relation to BMI and BMR of the client and use this information in the activities to justify the interpretation of nutritional programme and modifications.
- When answering questions refer to the nutritional programme and individual as much as possible and make sure that the content you refer to is actually in the case study.
- Use the assessment criteria in the mark scheme for each activity to guide you and ensure you cover all the content needed for each activity.
- Please click here for the specification and SAMS.