Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson BTEC Level 3 Nationals Certificate, Extended Certificate	Learner Registration Number
Tuesday 12 Janu	uary 2021
Morning (Time: 1 hour 30 minutes)	Paper Reference 21325L
Applied Human Unit 1: Principles of Applied	
You must have: A calculator and a ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and learner registration number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 The skin is a barrier against infection by pathogens.

When the skin is cut, a blood clot forms.

(a) Name **two** components of a blood clot.

(2)

(b) The immune system includes specific and non-specific defences.

Complete Table 1 by adding Yes and No to show whether each defence is specific or non-specific.

The first row has been completed for you.

(3)

defence	specific	non-specific
skin forming a physical barrier	No	Yes
antibody production by lymphocytes		
hydrochloric acid in the stomach		
phagocytosis by phagocytes		

Table 1

(c) Viruses are pathogens that replicate inside the body's cells.

Name **one** type of white blood cell that destroys cells containing viruses.

(1)

(Total for Question 1 = 6 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2 Marfan syndrome is a genetic disorder that affects the body's connective tissues.

Marfan syndrome is caused by a mutation in the FBN1 gene.

(a) (i) Analysis of a part of the FBN1 gene showed that 16% of the DNA sequence was cytosine.

Identify the percentage of guanine in this part of the FBN1 gene.

(1)

\boxtimes	A 16%
×	B 18%
×	C 32%
×	D 34%

(ii) Name the nucleotide base that is found only in RNA.

(1)

DO NOT WRITE IN THIS AREA

(b) Marfan syndrome is inherited.

Figure 1 shows the allele combination for the *FBN1* gene for two people who are expecting a child.

M m

Male (affected)

Female (not affected)

Key:

M – mutated FBN1 allele

m – normal FBN1 allele

Figure 1

Explain why there is a 50% chance that their child will inherit Marfan syndrome.

You may include a diagram to support your answer.

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) Some mutations that cause Marfan syndrome happen in the non-coding regions within the *FBN1* gene.

Which word describes a non-coding region of DNA within a gene?

(1)

×	A	anticodon
×	В	codon
×	c	exon
×	D	intron

(Total for Question 2 = 6 marks)

DO NOT WRITE IN THIS AREA

3	Most cancers cause tumours to form.	
	Tumours can be malignant or benign.	
	(a) State two differences between malignant tumours and benign tumours.	(2)
1		
2		
	(b) Explain how mutations in different regions of a DNA molecule can cause cancer.	(6)
	(Total for Question 3 = 8 ma	rks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

-) (:)	. The second and a second as a	
a) (ı)	Hyperplasia and atrophy are two examples of cell adaptation to injury.	on in response
	Explain the effects that hyperplasia and atrophy have on ce	
		(4)
	hyperplasia	
	atrophy	
(ii)) Severe damage to the cell may result in cell death.	
(ii)		
(ii)) Severe damage to the cell may result in cell death.	(1)
(ii)) Severe damage to the cell may result in cell death.	(1)
(ii)) Severe damage to the cell may result in cell death. Identify the word describing cell death.	(1)
(ii)) Severe damage to the cell may result in cell death. Identify the word describing cell death. A cytokinesis	(1)

DO NOT WRITE IN THIS AREA

 (b) (i) An ischemic stroke can result in damage to brain cells. Explain how. (ii) Atherosclerosis is one factor that increases the risk of an ischemic stroke. Give one other factor that increases the risk of an ischemic stroke. 	(3)
Explain how. (ii) Atherosclerosis is one factor that increases the risk of an ischemic stroke.	(3)
(ii) Atherosclerosis is one factor that increases the risk of an ischemic stroke.	(3)
	(3)
Give one other factor that increases the risk of an ischemic stroke.	
	(1)
(Total for Question 4 = 9	marks)

DO NOT WRITE IN THIS AREA

5	(a) Autoimmune diseases are caused when the body's immune system attacks its	
	own cells.	

Which is an example of an autoimmune disease?

(1)

×	Α	arrhythmia
×	В	COPD
×	C	Down's syndrome
×	D	rheumatoid arthritis

(b) (i) Hayfever is an example of an allergic reaction.

When a person is exposed to pollen, mast cells can release histamine.

Explain the effect of histamine on blood vessels.

(3)

DO NOT WRITE IN THIS AREA

(Total for Question 5 =	= 11 marks)
	(2)
(ii) Explain how infection with HIV can reduce the function of the immune system.	
(i) Give one example of a medical treatment that reduces the function of immune system.	the (1)
treatment of anaphylaxis	
cause of loss of consciousness	
Explain why anaphylaxis can cause a loss of consciousness and how anaphylaxis can be treated.	(4)
Anaphylaxis can cause a person to lose consciousness.	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- **6** Blood is transported around the body in blood vessels.
 - (a) (i) Which blood vessel carries oxygenated blood from the lungs to the heart?

(1)

×	A aorta
×	B pulmonary artery
×	C pulmonary vein
×	D vena cava

(ii) Figure 2 shows a cross section of the heart.

Figure 2

Name the parts of the heart labelled P and Q in Figure 2.

/	7	٦
l	4	į

Q	 	

DO NOT WRITE IN THIS AREA

(9)

DO NOT WRITE IN THIS AREA

(b) Figure 3 shows two types of blood vessel.

(Source: https://www.eiscolabs.com/products/anatomy-of-artery-vein-and-capillary)

Figure 3

Evaluate how the structure of each type of blood vessel, R and S	S, is adapted for
its function.	

DO NOT WRITE IN THIS AREA

(Total for Question 6 = 12 marks)
(10141101 Quotation o 12 illustrat,

DO NOT WRITE IN THIS AREA

_	From Aires a within the least a section matrice.	
7	Every tissue within the body contains proteins.	
	(a) Proteins can be classified as either globular or fibrous depending on their struct	ure.
	Describe two structural similarities of and two structural differences between globular proteins and fibrous proteins.	
	graduate product and market and production	(4)
	similarities	
1		
' "		
2		
	differences	
1		
2		

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	on uses glucose to release energy needed for muscle contraction. can be broken down to form molecules of glucose.	
	fy the type of bond that needs to be broken to release glucose cules from glycogen.	(1)
×	A disulfide	
×	B ester	
×	C glycosidic	
×	D ionic	
	the protein in red blood cells that transports oxygen around the body.	

(1)

(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(iv) Anaerobic respiration can also release energy within the muscle cells.

Figure 4 shows the process of anaerobic respiration.

Figure 4

Identify molecules W, X, Y and Z in Figure 4.

W	
X	
Υ	

Z ...

(c) Figure 5 shows an electron micrograph of a bundle of nerve cells within a section of skeletal muscle.

(Source: © HERVE CONGE, ISM / SCIENCE PHOTO LIBRARY)

Figure 5

The magnification of the image in Figure 5 is x 825.

The observed diameter of the bundle of nerve cells is 66 mm.

Calculate the actual diameter, in micrometres (µm), of the bundle of nerve cells.

(3)

actual diameter = µm

(Total for Question 7 = 14 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- **8** The kidneys control the body's water balance.
 - (a) Figure 6 shows the structure of the urinary system.

(Source: © GraphicsRF.com/Shutterstock)

Figure 6

(i) Identify the feature labelled T in Figure 6.

(1)

X	A nephron
×	B renal vein
×	C ureter
×	D urethra

(ii) Glucose in urine is a sign of diabetes.

Explain why.

(3)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
|
 |

(1)

(9)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(iii)	Which substance is selectively reabsorbed back into the blood using
	active transport?

■ A plasma proteins
 ■ B sodium ions
 ■ C creatinine
 ■ D water

(b) Discuss how the negative feedback mechanism controls the body's water balance.

Your answer should include the role of:

- the brain
- · the kidneys.

DO NOT WRITE IN THIS AREA

(Total for Question 8 = 14 marks)
TOTAL FOR PAPER = 80 MARKS
IOIAL FOR PAPER = 80 MARKS

DO NOT WRITE IN THIS AREA