Pearson BTEC Level 3 Nationals

Engineering

Information Booklet of Formulae and Constants Unit 1: Engineering Principles

Extended Certificate, Foundation Diploma, Diploma, Extended
Diploma in Engineering and all titles - Manufacturing/Aeronautical/ Computer/Electrical and Electronic/Mechanical Engineering.
Sample assessment material for first teaching September 2016

Instructions

- You will need the information in this booklet to answer most questions.
\square Read the information carefully.
- You must not write your answers in this booklet.
\square Only your answers given in the question paper will be marked.

Paper reference

Formulae and Constant

Static and Direct Current electricity theory

Current
Coulomb's law
Resistance
Resistance: temperature coefficient
Ohm's law
Total for resistors in series
Total for resistors in parallel

Power
Efficiency
Kirchhoff's current law
Kirchhoff's voltage law

Capacitance

Electric field strength
Electric field strength: uniform electric fields $E=\frac{V}{d}$
Capacitance
Time constant
Charged stored
Energy stored in a capacitor
Capacitors in series
Capacitors in parallel
Voltage decay on capacitor discharge

Magnetism and electromagnetism

Magnetic flux density
$B=\frac{\phi}{A}$
$F_{m}=N I$
Magneto motive force
m
Magnetic field strength or magnetising force $H=\frac{N I}{l}$

Permeability
Reluctance

Induced EMF
Energy stored in an inductor
Inductance of a coil
Transformer equation
$\frac{B}{H}=\mu_{0} \mu_{r}$
$S=\frac{F_{m}}{\phi}$
$E=B L v, E=-N \frac{d \phi}{d t}=-L \frac{d I}{d t}$
$W=\frac{1}{2} L I^{2}$
$L=\frac{N \phi}{I}$
$\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$

Single phase Alternating Current theory

Time period
Capacitive reactance
Inductive reactance
Root mean square voltage

$$
T=\frac{1}{f}
$$

$X_{C}=\frac{1}{2 \pi f C}$
$X_{L}=2 \pi f L$
$R M S$ voltage $=\frac{\text { peak voltage }}{\sqrt{2}}$

Total impedance of an inductor in series with a resistance

$$
Z=\sqrt{X_{L}^{2}+R^{2}}
$$

Total impedance of a capacitor in series with a resistance

$$
Z=\sqrt{X_{C}^{2}+R^{2}}
$$

Average waveform value average value Average value $=\frac{2}{\pi} \times$ maximum value

Form factor of a waveform

$$
\text { Form factor }=\frac{R M S \text { value }}{\text { average value }}
$$

Laws of Mathematics

Rules of indices

$a^{m} \times a^{n}=a^{(m+n)}$
$a^{m} \div a^{n}=a^{(m-n)}$
$\left(a^{m}\right)^{n}=a^{m n}$

Rules of logarithms

$\log A B=\log A+\log B$
$\log \frac{A}{B}=\log A-\log B$
$\log A^{x}=x \log A$

Trigonometric rules

Sine rule

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ or $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Cosine rule

$a^{2}=b^{2}+c^{2}-2 b c \cos A$

Volume and area of regular shapes

length of an arc of a circle $s=r \theta$
area of a sector of a circle $A=\frac{1}{2} r^{2} \theta$
volume of a cylinder
total surface area of a cylinder $V=\pi r^{2} h$
volume of sphere
$T S A=2 \pi r h+2 \pi r^{2}$
$V=\frac{4}{3} \pi r^{3}$
surface area of a sphere
$S A=4 \pi r^{2}$
volume of a cone
$V=\frac{1}{3} \pi r^{2} h$
curved surface area of cone
$\operatorname{CSA}=\pi r l$

Quadratic formula

To solve $a x^{2}+b x+c=0, a \neq 0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Equations of linear motion with uniform acceleration

$v=u+a t$
$s=u t+\frac{1}{2} a t^{2}$
$v^{2}=u^{2}+2 a s$
$s=\frac{1}{2}(u+v) t$

Stress and strain
Direct stress

$$
\sigma=\frac{F}{A}
$$

Direct strain

$$
\varepsilon=\frac{\Delta L}{L}
$$

Shear stress

$$
\tau=\frac{F}{A}
$$

Shear strain

$$
\gamma=\frac{a}{b}
$$

Modulus of elasticity

$$
E=\frac{\sigma}{\varepsilon}
$$

Modulus of rigidity

$$
G=\frac{\tau}{\gamma}
$$

Work, power, energy and forces

Force	$F=m a$
Resultant force	$F_{X}=F \cos \theta, F_{y}=F \sin \theta$ (where θ is measured from the horizontal) Mechanical work Force to overcome limiting friction
Gravitational potential energy	$F=\mu N$
Kinetic energy	$P E=m g h$
	$\mathrm{KE}=\frac{1}{2} m v^{2}$

Gas laws

Boyle's law	$p V=$ constant
Charles's law	$\frac{V}{T}=$ constant

General gas equation

$$
\frac{p V}{T}=\text { constant }
$$

Angular parameters

Centripetal acceleration $a=\omega^{2} r=\frac{v^{2}}{r}$

Power

$$
P=T \omega
$$

Rotational Kinetic energy $K E=\frac{1}{2} I \omega^{2}$
Angular frequency

$$
\omega=2 \pi f
$$

Frequency

$$
\mathrm{f}=\frac{1}{\text { time period }}
$$

2π radians $=360^{\circ}$

Physical constants

Acceleration due to gravity

$$
\begin{aligned}
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
\end{aligned}
$$

Permittivity of free space
Permeability of free space

Thermodynamic principles

Sensible heat	$Q=m c \Delta T$
Latent heat	$Q=m I$
Entropy and enthalpy	$H=U+p V$
Linear expansivity	$\Delta L=\alpha L \Delta T$

Fluid principles

Continuity of volumetric flow
Continuity of mass flow
Hydrostatic thrust on an immersed plane surface
$A_{1} v_{1}=A_{2} v_{2}$
$\rho A_{1} V_{1}=\rho A_{2} V_{2}$
$F=\rho g A x$

