Edexcel, BTEC and LCCI qualifications

Edexcel, BTEC and LCCI qualifications are awarded by Pearson, the UK’s largest awarding body offering academic and vocational qualifications that are globally recognised and benchmarked. For further information, please visit our qualifications website at qualifications.pearson.com. Alternatively, you can get in touch with us using the details on our contact us page at qualifications.pearson.com/contactus

About Pearson

Pearson is the world's leading learning company, with 35,000 employees in more than 70 countries working to help people of all ages to make measurable progress in their lives through learning. We put the learner at the centre of everything we do, because wherever learning flourishes, so do people. Find out more about how we can help you and your learners at qualifications.pearson.com

This specification is Issue 5. Key changes are sidelined. We will inform centres of any changes to this issue. The latest issue can be found on our website.

References to third-party material made in this specification are made in good faith. We do not endorse, approve or accept responsibility for the content of materials, which may be subject to change, or any opinions expressed therein. (Material may include textbooks, journals, magazines and other publications and websites.)

ISBN 978 1 446 95075 3

All the material in this publication is copyright © Pearson Education Limited 2019
Welcome

With a track record built over 30 years of learner success, BTEC Nationals are widely recognised by industry and higher education as the signature vocational qualification at Level 3. They provide progression to the workplace either directly or via study at a higher level. Proof comes from YouGov research, which shows that 62% of large companies have recruited employees with BTEC qualifications. What’s more, well over 100,000 BTEC students apply to UK universities every year and their BTEC Nationals are accepted by over 150 UK universities and higher education institutes for relevant degree programmes either on their own or in combination with A Levels.

Why are BTECs so successful?

BTECs embody a fundamentally learner-centred approach to the curriculum, with a flexible, unit-based structure and knowledge applied in project-based assessments. They focus on the holistic development of the practical, interpersonal and thinking skills required to be able to succeed in employment and higher education.

When creating the BTEC Nationals in this suite, we worked with many employers, higher education providers, colleges and schools to ensure that their needs are met. Employers are looking for recruits with a thorough grounding in the latest industry requirements and work-ready skills such as teamwork. Higher education needs students who have experience of research, extended writing and meeting deadlines.

We have addressed these requirements with:

• a range of BTEC sizes, each with a clear purpose, so there is something to suit each learner’s choice of study programme and progression plans
• refreshed content that is closely aligned with employers’ and higher education needs for a skilled future workforce
• assessments and projects chosen to help learners progress to the next stage. This means some are set by you to meet local needs, while others are set and marked by Pearson so that there is a core of skills and understanding that is common to all learners. For example, a written test can be used to check that learners are confident in using technical knowledge to carry out a certain job.

We are providing a wealth of support, both resources and people, to ensure that learners and their teachers have the best possible experience during their course. See Section 10 for details of the support we offer.

A word to learners

Today’s BTEC Nationals are demanding, as you would expect of the most respected applied learning qualification in the UK. You will have to choose and complete a range of units, be organised, take some assessments that we will set and mark, and keep a portfolio of your assignments. But you can feel proud to achieve a BTEC because, whatever your plans in life – whether you decide to study further, go on to work or an apprenticeship, or set up your own business – your BTEC National will be your passport to success in the next stage of your life.

Good luck, and we hope you enjoy your course.
Collaborative development

Students completing their BTEC Nationals in Construction and the Built Environment will be aiming to go on to employment, often via the stepping stone of higher education. It was, therefore, essential that we developed these qualifications in close collaboration with experts from professional bodies, businesses and universities, and with the providers who will be delivering the qualifications. To ensure that the content meets providers’ needs and provides high-quality preparation for progression, we engaged experts. We are very grateful to all the university and further education lecturers, teachers, employers, professional body representatives and other individuals who have generously shared their time and expertise to help us develop these new qualifications.

Professional bodies and businesses have provided letters of support confirming that these qualifications meet their entry requirements. These letters can be viewed on our website.

Summary of Pearson BTEC Level 3 National Extended Certificate in Construction and the Built Environment specification Issue 5 changes

<table>
<thead>
<tr>
<th>Summary of changes made between the previous issue and this current issue</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>The wording under Section 9 Understanding the qualification grade subsection Calculation of the qualification grade has been updated to clarify current practice in ensuring maintenance and consistency of qualification standards.</td>
<td>Page 88</td>
</tr>
</tbody>
</table>

Summary of Pearson BTEC Level 3 National Extended Certificate in Construction and the Built Environment specification Issue 3 to Issue 4 changes

<table>
<thead>
<tr>
<th>Summary of changes made between Issue 3 and Issue 4</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Structures of the qualifications at a glance table has been updated to include four new units added to the Diploma and Extended Diploma in Construction and the Built Environment.</td>
<td>Page 8</td>
</tr>
<tr>
<td>The wording in Section 7 Teacher/centre malpractice has been updated to clarify suspension of certification in certain circumstances.</td>
<td>Page 84</td>
</tr>
<tr>
<td>The wording under Section 9 Understanding the qualification grade has been updated to clarify current practice in ensuring maintenance and consistency of qualification standards.</td>
<td>Page 88</td>
</tr>
</tbody>
</table>

If you need further information on these changes or what they mean, contact us via our website at: qualifications.pearson.com/en/support/contact-us.html.
Contents

Introduction to BTEC National qualifications for the construction and the built environment sector 1
Total Qualification Time 2
Qualifications, sizes and purposes at a glance 3
Structures of the qualifications at a glance 6
Qualification and unit content 9
Assessment 9
Grading for units and qualifications 11
UCAS Tariff points 11

1 Qualification purpose 12

2 Structure 15

3 Units 17
Understanding your units 17
Index of units 21

4 Planning your programme 67

5 Assessment structure and external assessment 70
Introduction 70
Internal assessment 70
External assessment 70

6 Internal assessment 72
Principles of internal assessment 72
Setting effective assignments 74
Making valid assessment decisions 76
Planning and record keeping 78

7 Administrative arrangements 79
Introduction 79
Learner registration and entry 79
Access to assessment 79
Administrative arrangements for internal assessment 80
Administrative arrangements for external assessment 81
Dealing with malpractice in assessment 83
Certification and results 85
Additional documents to support centre administration 85

8 Quality assurance 86

9 Understanding the qualification grade 88

10 Resources and support 92
Support for setting up your course and preparing to teach 92
Support for teaching and learning 93
Support for assessment 93
Training and support from Pearson 94

Appendix 1 Links to industry standards 95

Appendix 2 Glossary of terms used for internally-assessed units 96
Introduction to BTEC National qualifications for the construction and the built environment sector

This specification contains the information you need to deliver the Pearson BTEC Level 3 National Extended Certificate in Construction and the Built Environment. The specification signposts you to additional handbooks and policies. It includes all the units for this qualification.

This qualification is part of the suite of Construction and the Built Environment qualifications offered by Pearson. In the suite there are qualifications that focus on different progression routes, allowing learners to choose the one best suited to their aspirations.

All qualifications in the suite share some common units and assessments, allowing learners some flexibility in moving between qualifications where they wish to select a more specific progression route. The qualification titles are given below.

Within this suite are BTEC National qualifications for post-16 learners wishing to specialise in a specific industry, occupation or occupational group. The qualifications give learners specialist knowledge and technical skills, enabling entry to an Apprenticeship or other employment, or progression to related higher education courses. Learners taking these qualifications must have a significant level of employer involvement in their programmes.

In the construction and the built environment sector these are:
Pearson BTEC Level 3 National Extended Certificate in Construction and the Built Environment (603/0862/X)
Pearson BTEC Level 3 National Foundation Diploma in Construction and the Built Environment (603/0863/1)
Pearson BTEC Level 3 National Diploma in Construction and the Built Environment (603/0864/3)
Pearson BTEC Level 3 National Diploma in Building Services Engineering (603/1218/X)
Pearson BTEC Level 3 National Diploma in Civil Engineering (603/1217/8)
Pearson BTEC Level 3 National Extended Diploma in Construction and the Built Environment (603/0861/8)
Pearson BTEC Level 3 National Extended Diploma in Building Services Engineering (603/1219/1)
Pearson BTEC Level 3 National Extended Diploma in Civil Engineering (603/1216/6).

Other BTEC National qualifications in this sector provide a broad introduction that gives learners transferable knowledge and skills. These qualifications are for post-16 learners who want to continue their education through applied learning. The qualifications prepare learners for a range of higher education courses either by meeting entry requirements in their own right or by being accepted alongside other qualifications at the same level and adding value to them. Learners may progress to one of the qualifications in this specification having completed a smaller qualification that provides suitable fundamental knowledge and skills.

This specification signposts all the other essential documents and support that you need as a centre in order to deliver, assess and administer the qualification, including the staff development required. A summary of all essential documents is given in Section 7. Information on how we can support you with this qualification is given in Section 10.

The information in this specification is correct at the time of publication.
Total Qualification Time

For all regulated qualifications, Pearson specifies a total number of hours that it is estimated learners will require to complete and show achievement for the qualification: this is the Total Qualification Time (TQT). Within TQT, Pearson identifies the number of Guided Learning Hours (GLH) that we estimate a centre delivering the qualification might provide. Guided learning means activities, such as lessons, tutorials, online instruction, supervised study and giving feedback on performance, that directly involve teachers and assessors in teaching, supervising and invigilating learners. Guided learning includes the time required for learners to complete external assessment under examination or supervised conditions.

In addition to guided learning, other required learning directed by teachers or assessors will include private study, preparation for assessment and undertaking assessment when not under supervision, such as preparatory reading, revision and independent research.

BTEC Nationals have been designed around the number of hours of guided learning expected. Each unit in the qualification has a GLH value of 60, 90 or 120. There is then a total GLH value for the qualification.

Each qualification has a TQT value. This may vary within sectors and across the suite depending on the nature of the units in each qualification and the expected time for other required learning.

The following table shows all the qualifications in this sector and their GLH and TQT values.
Qualifications, sizes and purposes at a glance

<table>
<thead>
<tr>
<th>Title</th>
<th>Size and structure</th>
<th>Summary purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson BTEC Level 3 National Extended Certificate in Construction and the Built Environment</td>
<td>360 GLH (490 TQT) Equivalent in size to one A Level. 4 units of which 4 are mandatory and 2 are external. Mandatory content (100%). External assessment (66%).</td>
<td>The Extended Certificate is for learners who are interested in learning about the construction sector alongside other fields of study, with a view to progressing to a wide range of higher education courses, not necessarily in construction-related subjects. It is designed to be taken as part of a programme of study that includes other appropriate BTEC Nationals or A Levels.</td>
</tr>
<tr>
<td>Pearson BTEC Level 3 National Foundation Diploma in Construction and the Built Environment</td>
<td>540 GLH (725 TQT) Equivalent in size to 1.5 A Levels. 7 units of which 4 are mandatory and 2 are external. Mandatory content (66%). External assessment (44%).</td>
<td>The Foundation Diploma is for learners looking to study construction as a one-year, full-time course, or for those wishing to take it alongside another area of contrasting or complementary study, as part of a two-year, full-time study programme. It supports progression to higher education, if taken as part of a programme of study that includes other BTEC Nationals or A Levels. It also supports progression to an Apprenticeship in the construction sector or to a further year of study at Level 3.</td>
</tr>
<tr>
<td>Pearson BTEC Level 3 National Diploma in Construction and the Built Environment</td>
<td>720 GLH (985 TQT) Equivalent in size to two A Levels. 10 units of which 7 are mandatory and 2 are external. Mandatory content (75%). External assessment (33%).</td>
<td>The Diploma is designed to be the substantive part of a 16–19 study programme for learners who want a strong core of sector study. This programme may include other BTEC Nationals or A Levels to support progression to higher education courses in construction areas before entering employment. The additional qualification(s) studied allow learners either to give breadth to their study programme by choosing a contrasting subject, or to give it more focus by choosing a complementary subject. This qualification can also be used to progress to Higher Apprenticeships.</td>
</tr>
<tr>
<td>Title</td>
<td>Size and structure</td>
<td>Summary purpose</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Pearson BTEC Level 3 National Diploma in Building Services Engineering</td>
<td>720 GLH (990 TQT) Equivalent in size to two A Levels. 10 units of which 6 are mandatory and 2 are external. Mandatory content (66%) External assessment (33%).</td>
<td>The Diploma is designed to be the substantive part of a 16–19 study programme for learners who want a strong core of sector study. This programme may include other BTEC Nationals or A Levels to support progression to higher education courses in construction areas before entering employment. The qualification is intended to meet the educational base for registration as a technician. The additional qualification(s) studied allow learners either to give breadth to their study programme by choosing a contrasting subject, or to give it more focus by choosing a complementary subject. This qualification can also be used, when studied part time, as part of an advanced technician Apprenticeship in building services engineering, or for progression to a Higher Apprenticeship in building services engineering.</td>
</tr>
<tr>
<td>Pearson BTEC Level 3 National Diploma in Civil Engineering</td>
<td>720 GLH (975 TQT) Equivalent in size to two A Levels. 10 units of which 7 are mandatory and 2 are external. Mandatory content (75%) External assessment (33%).</td>
<td>The Diploma is designed to be the substantive part of a 16–19 study programme for learners who want a strong core of sector study. This programme may include other BTEC Nationals or A Levels to support progression to higher education courses in construction areas before entering employment. The qualification is intended to meet the educational base for registration as a technician. The additional qualification(s) studied allow learners either to give breadth to their study programme by choosing a contrasting subject, or to give it more focus by choosing a complementary subject. This qualification can also be used, when studied part time, as part of an advanced technician Apprenticeship in civil engineering, or for progression to a Higher Apprenticeship in civil engineering.</td>
</tr>
<tr>
<td>Title</td>
<td>Size and structure</td>
<td>Summary purpose</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Pearson BTEC Level 3 National Extended Diploma in Construction and the Built Environment</td>
<td>1080 GLH (1465 TQT) Equivalent in size to three A Levels. 26 units of which 9 are mandatory and 3 are external. Mandatory content (66%) External assessment (33%).</td>
<td>The Extended Diploma is a two-year, full-time course that meets entry requirements in its own right for learners who want to progress to higher education courses in construction areas before entering employment. It can also support learners who want to progress directly to employment in job roles in construction or a professional construction role and Higher Apprenticeships in the construction sector.</td>
</tr>
<tr>
<td>Pearson BTEC Level 3 National Extended Diploma in Building Services Engineering</td>
<td>1080 GLH (1480 TQT) Equivalent in size to three A Levels. 24 units of which 7 are mandatory and 3 are external. Mandatory content (55%) External assessment (33%).</td>
<td>The Extended Diploma is a two-year, full-time course that meets entry requirements in its own right for learners who want to progress to higher education courses in building services areas before entering employment. The qualification is intended to meet the educational base for registration as a technician. It supports learners who want to progress directly to employment in roles in building services engineering as technicians, or to a professional construction role and advanced/Higher Apprenticeships in building services engineering.</td>
</tr>
<tr>
<td>Pearson BTEC Level 3 National Extended Diploma in Civil Engineering</td>
<td>1080 GLH (1450 TQT) Equivalent in size to three A Levels. 15 units of which 8 are mandatory and 3 are external. Mandatory content (66%) External assessment (33%).</td>
<td>The Extended Diploma is a two-year, full-time course that meets entry requirements in its own right for learners who want to progress to higher education courses in civil engineering areas before entering employment. The qualification is intended to meet the educational base for registration as a technician. It supports learners who want to progress directly to employment in roles in civil engineering as technicians, or to a professional construction role and advanced/Higher Apprenticeships in civil engineering.</td>
</tr>
</tbody>
</table>
Structures of the qualifications at a glance

This table shows all the units and the qualifications to which they contribute. The full structure for this Pearson BTEC Level 3 National in Construction and the Built Environment is shown in Section 2. You must refer to the full structure to select units and plan your programme.

Key

<table>
<thead>
<tr>
<th>Unit assessed externally</th>
<th>M</th>
<th>Mandatory units</th>
<th>O</th>
<th>Optional units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE</td>
<td></td>
<td>Construction and the Built Environment</td>
<td>CE</td>
<td>Civil Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit (number and title)</th>
<th>Unit size (GLH)</th>
<th>Extended Certificate (360 GLH)</th>
<th>Foundation Diploma (540 GLH)</th>
<th>Diploma (720 GLH)</th>
<th>Extended Diploma (1080 GLH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CBE</td>
<td>CE</td>
<td>BSE</td>
<td>CBE</td>
</tr>
<tr>
<td>1 Construction Principles</td>
<td>120</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>2 Construction Design</td>
<td>120</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>3 Tendering and Estimating</td>
<td>120</td>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4 Construction Technology</td>
<td>60</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5 Health and Safety in Construction</td>
<td>60</td>
<td>O</td>
<td>M</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>6 Surveying in Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>7 Graphical Detailing in Construction</td>
<td>60</td>
<td>O</td>
<td>M</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>8 Building Regulations and Control in Construction</td>
<td>60</td>
<td>O</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>9 Management of a Construction Project</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>10 Building Surveying in Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>11 Site Engineering for Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>M</td>
<td>O</td>
</tr>
<tr>
<td>12 Low Temperature Hot Water Systems in Building Services</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>13 Measurement Techniques in Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>14 Provision of Primary Services in Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>15 Further Mathematics for Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>16 Work Experience in the Construction Sector</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>17 Projects in Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>18 Building Information Modelling</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

continued overleaf
<table>
<thead>
<tr>
<th>Unit (number and title)</th>
<th>Unit size (GLH)</th>
<th>Extended Certificate (360 GLH)</th>
<th>Foundation Diploma (540 GLH)</th>
<th>Diploma (720 GLH)</th>
<th>Extended Diploma (1080 GLH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CBE</td>
<td>CE</td>
<td>BSE</td>
<td>CBE</td>
</tr>
<tr>
<td>19 Quantity Surveying</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>20 Quality Control Management in Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>21 Building Services Science</td>
<td>60</td>
<td>M</td>
<td>O</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>22 Economics and Finance in Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>23 Construction in Civil Engineering</td>
<td>60</td>
<td>M</td>
<td>O</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>24 Planning Application Procedures in Construction</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>25 Property Law</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>26 Conversion, Adaptation and Maintenance of Buildings</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>27 Building Services Control Systems</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>28 Heating, Ventilation and Air Conditioning Design</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>29 Use of Static and Dynamic Fluids in Building Services Engineering</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>30 Plumbing Technology in Building Services Engineering</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>31 Electrical Principles in Building Services Engineering</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>32 Electrical Installation Standards, Components and Design</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>33 Quantity Surveying Measurement Techniques in Building Services Engineering</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>34 Building Regulations and Control in Building Services Engineering</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>35 Principles and Applications of Structural Mechanics</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>36 Public Health Engineering</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>37 Specialist Civil Engineering Techniques</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>38 Highway Construction and Maintenance in Civil Engineering</td>
<td>60</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Unit (number and title)</td>
<td>Unit size (GLH)</td>
<td>Extended Certificate (360 GLH)</td>
<td>Foundation Diploma (540 GLH)</td>
<td>Diploma (720 GLH)</td>
<td>Extended Diploma (1080 GLH)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>39 Housing Design Project</td>
<td>60</td>
<td></td>
<td></td>
<td>CBE</td>
<td></td>
</tr>
<tr>
<td>40 Offsite and Onsite Alternative Construction Methods</td>
<td>60</td>
<td></td>
<td></td>
<td>CE</td>
<td></td>
</tr>
<tr>
<td>41 Renewable Energy for Housing</td>
<td>60</td>
<td></td>
<td></td>
<td>BSE</td>
<td></td>
</tr>
<tr>
<td>42 The Housing Industry</td>
<td>60</td>
<td></td>
<td></td>
<td>CBE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BSE</td>
<td></td>
</tr>
</tbody>
</table>
Qualification and unit content

Pearson has developed the content of the new BTEC Nationals in collaboration with employers and representatives from higher education and relevant professional bodies. In this way, we have ensured that content is up to date and that it includes the knowledge, understanding, skills and attributes required in the sector.

Each qualification in the suite has its own purpose. The mandatory content provides a balance of breadth and depth ensuring that all learners have a strong basis for developing technical skills required in the sector. Learners are then offered the opportunity to develop a range of technical skills and attributes expected by employers, with some opportunity to select between optional units where a degree of choice for individual learners to study content relevant to their own progression choices is appropriate. It is expected that learners will apply their learning in relevant employment and sector contexts during delivery and have opportunities to engage meaningfully with employers.

The proportion of mandatory content ensures that all learners are following a coherent programme of study and acquiring the knowledge, understanding and skills that will be recognised and valued. Learners are expected to show achievement across mandatory units as detailed in Section 2.

BTEC Nationals have always required applied learning that brings together knowledge and understanding (the cognitive domain) with practical and technical skills (the psychomotor domain). This is achieved through learners performing vocational tasks that encourage the development of appropriate vocational behaviours (the affective domain) and transferable skills. Transferable skills are those such as communication, teamwork, planning and completing tasks to high standards, which are valued in both the workplace and in higher education.

Our approach provides rigour and balance, and promotes the ability to apply learning immediately in new contexts. Further details can be found in Section 2.

Centres should ensure that delivery of content is kept up to date. In particular units may include reference to regulation, legislation, policies and regulatory/standards organisations. This is designed to provide guidance on breadth and depth of coverage and may be adjusted to update content and to reflect variations within the UK.

Assessment

Assessment is specifically designed to fit the purpose and objective of the qualification. It includes a range of assessment types and styles suited to vocational qualifications in the sector. There are three main forms of assessment that you need to be aware of: external, internal and synoptic.

Externally-assessed units

Each external assessment for a BTEC National is linked to a specific unit. All of the units developed for external assessment are of 120 GLH to allow learners to demonstrate breadth and depth of achievement. Each assessment is taken under specified conditions, then marked by Pearson and a grade awarded. Learners are permitted to resit external assessments during their programme. You should refer to our website for current policy information on permitted retakes.

The styles of external assessment used for qualifications in the Construction and the Built Environment suite are:

- examinations – all learners take the same assessment at the same time, normally with a written outcome
- set tasks – learners take the assessment during a defined window and demonstrate understanding through completion of a vocational task.

Some external assessments include a period of preparation using set information. External assessments are available once or twice a year. For detailed information on the external assessments please see the table in Section 2. For further information on preparing for external assessment see Section 5.
Internally-assessed units
Most units in the sector are internally assessed and subject to external standards verification. This means that you set and assess the assignments that provide the final summative assessment of each unit, using the examples and support that Pearson provides. Before you assess you will need to become an approved centre, if you are not one already. You will need to prepare to assess using the guidance in Section 6.

In line with the requirements and guidance for internal assessment, you select the most appropriate assessment styles according to the learning set out in the unit. This ensures that learners are assessed using a variety of styles to help them develop a broad range of transferable skills. Learners could be given opportunities to:
- demonstrate practical and technical skills using appropriate (tools/processes etc.)
- complete realistic tasks to meet specific briefs or particular purposes
- write up the findings of their own research
- use case studies to explore complex or unfamiliar situations
- carry out projects for which they have choice over the direction and outcomes.

You will make grading decisions based on the requirements and supporting guidance given in the units. Learners may not make repeated submissions of assignment evidence. For further information see Section 6.

Synoptic assessment
Synoptic assessment requires learners to demonstrate that they can identify and use effectively, in an integrated way, an appropriate selection of skills, techniques, concepts, theories and knowledge from across the whole sector as relevant to a key task. BTEC learning has always encouraged learners to apply their learning in realistic contexts using scenarios and realistic activities that will permit learners to draw on and apply their learning. For these qualifications we have formally identified units which contain a synoptic assessment task. Synoptic assessment must take place after the teaching and learning of other mandatory units in order for learners to be able to draw from the full range of content. The synoptic assessment gives learners an opportunity to independently select and apply learning from across their programmes in the completion of a vocational task. Synoptic tasks may be in internally or externally assessed units. The particular unit that contains the synoptic tasks for this qualification is shown in the structure in Section 2.

Language of assessment
Assessment of the internal and external units for these qualifications will be available in English. All learner work must be in English. A learner taking the qualifications may be assessed in British or Irish Sign Language where it is permitted for the purpose of reasonable adjustment. For information on reasonable adjustments see Section 7.
Grading for units and qualifications

Achievement in the qualification requires a demonstration of depth of study in each unit, assured acquisition of a range of practical skills required for employment or progression to higher education, and successful development of transferable skills. Learners achieving a qualification will have achieved across mandatory units, including external and synoptic assessment.

Units are assessed using a grading scale of Distinction (D), Merit (M), Pass (P), Near Pass (N) and Unclassified (U). The grade of Near Pass is used for externally-assessed units only. All mandatory and optional units contribute proportionately to the overall qualification grade, for example a unit of 120 GLH will contribute double that of a 60 GLH unit.

Qualifications in the suite are graded using a scale of P to D*, or PP to D*D*, or PPP to D*D*D*. Please see Section 9 for more details. The relationship between qualification grading scales and unit grades will be subject to regular review as part of Pearson’s standards monitoring processes on the basis of learner performance and in consultation with key users of the qualification.

UCAS Tariff points

The BTEC Nationals attract UCAS points. Please go to the UCAS website for full details of the points allocated.
1 Qualification purpose

Pearson BTEC Level 3 National Extended Certificate in Construction and the Built Environment

In this section you will find information on the purpose of this qualification and how its design meets that purpose through the qualification objective and structure. We publish a full 'Statement of Purpose' for each qualification on our website. These statements are designed to guide you and potential learners to make the most appropriate choice about the size of qualification suitable at recruitment.

The construction sector

Construction is a very important global industry and is worth £90 billion annually to the UK economy. At technician level and beyond, there is a diverse range of career pathways, with established professional entry and development routes in civil engineering, building services engineering, design/architecture and construction supervision/management. Currently, qualified construction technicians, managers and professionals are highly sought after in the UK industry, with demand for a greater number of professionals to implement and lead low-carbon and sustainable building projects in an efficient, cost-effective way.

Who is this qualification for?

The Pearson BTEC Level 3 National Extended Certificate in Construction and the Built Environment is intended as a Tech Level qualification, equivalent in size to one A Level. It is designed to meet the Tech Bacc measure when studied alongside Level 3 mathematics and the Extended Project Qualification (EPQ). Outside the Tech Bacc, it will be a one-year programme when studied alongside further Level 3 qualifications. As well as direct entry to employment, this qualification is ideal for post-16 learners wanting to gain the core skills and knowledge required to progress to an Apprenticeship or to a work-based training programme in the construction sector.

No prior study of the sector is needed but learners should normally have a range of achievement at Level 2, in GCSEs or equivalent qualifications, including English, mathematics and science.

What does the qualification cover?

The content of this qualification has been developed in consultation with employers and professional bodies to ensure that it is appropriate for those interested in working in the sector. In addition, higher education representatives have been involved to ensure that it fully supports entry to the relevant range of specialist degrees.

There are four mandatory units, which cover the following aspects of construction:

- construction principles
- construction design
- health and safety in construction
- construction technology.

The unit content ensures that the teacher can focus on the key learning required to introduce technician-level theoretical principles, and enables further vocational study at Level 3 and beyond. It will introduce learners to personal responsibilities for health, safety and welfare, the industry and legislative requirements for health and safety, and the application of organisational processes and risk management to ensure compliance.

The maths, science and materials skills learned will give learners the fundamental knowledge needed to enable them to apply skills in a context used within the sector and progress to further study.

While the qualification has a strong focus on theoretical principles, the content is focused on the practical applications of the principles underpinning construction design, structural requirements and technology as applied in today's industry. Learners will be required to engage with sector employers as part of the course.
What could this qualification lead to?

This qualification will prepare learners for direct employment in the construction and built environment sector, either as an apprentice or as part of other formal work-based learning. Job roles include:

- apprentice construction project technician
- apprentice mechanical/electrical services technician
- apprentice construction design technician.

If successful, learners may use the foundation knowledge in this qualification to embark on further study, for example the Pearson BTEC Level 3 National Diploma in Construction and the Built Environment.

In addition to the construction sector-specific content outlined above, the requirements of the qualification mean that learners will develop the transferable and higher-order skills that are highly regarded by higher education and employers, for example communication skills and teamwork.

The qualification carries UCAS points and is recognised by higher education providers as contributing to admission requirements to many relevant construction courses. When combined with other qualifications within a study programme, such as two A Levels or an AS/A Level and another BTEC National Extended Certificate, such as maths, science or art and design, learners can progress to higher education or to other areas of construction, such as architecture.

Degree programmes that learners could progress to include:

- BSc (Hons) in Construction Management
- BSc (Hons) in Property Management (Building Surveying)
- BSc (Hons) in Architecture
- BSc (Hons) in Civil Engineering
- HNC/D in Civil Engineering
- HNC/D in Building Services Engineering
- HND in Construction and the Built Environment.

Learners should always check the entry requirements for degree programmes with specific higher education providers.

How does the qualification provide employability and technical skills?

In the BTEC National units there are opportunities during the teaching and learning phase to give learners practice in developing employability skills. Where employability skills are referred to in this specification, we are generally referring to skills in the following three main categories:

- **cognitive and problem-solving skills**: use critical thinking, approach non-routine problems applying expert and creative solutions, use systems and technology
- **intrapersonal skills**: communicating, working collaboratively, negotiating and influencing, self-presentation
- **interpersonal skills**: self-management, adaptability and resilience, self-monitoring and development.

There are also specific requirements in some units for assessment of these skills where relevant. For example, where learners are required to undertake real or simulated activities.

Many of the mandatory and specified optional units encourage learners to develop the specific practical skills that employers are looking for.
How does the qualification provide transferable knowledge and skills for higher education?

All BTEC Nationals provide transferable knowledge and skills that prepare learners for progression to university or other higher study either immediately or for career progression. The transferable skills that universities value include:

- the ability to learn independently
- the ability to research actively and methodically
- being able to give presentations and being active group members.

BTEC learners can also benefit from opportunities for deep learning where they are able to make connections among units and select areas of interest for detailed study. BTEC Nationals provide a vocational context in which learners can become prepared for life-long learning through:

- reading technical texts
- analytical skills.
2 Structure

Qualification structure

Pearson BTEC Level 3 National Extended Certificate in Construction and the Built Environment

Mandatory units
There are four mandatory units, two internal and two external. Learners must complete and achieve at Near Pass grade or above in all mandatory external units in group A. Learners must also complete all units in group B.

<table>
<thead>
<tr>
<th>Unit number</th>
<th>Unit title</th>
<th>GLH</th>
<th>Type</th>
<th>How assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mandatory units group A – learners complete and achieve all units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Construction Principles</td>
<td>120</td>
<td>Mandatory</td>
<td>External</td>
</tr>
<tr>
<td>2</td>
<td>Construction Design</td>
<td>120</td>
<td>Mandatory and Synoptic</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Mandatory units group B – learners complete all units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Construction Technology</td>
<td>60</td>
<td>Mandatory</td>
<td>Internal</td>
</tr>
<tr>
<td>5</td>
<td>Health and Safety in Construction</td>
<td>60</td>
<td>Mandatory</td>
<td>Internal</td>
</tr>
</tbody>
</table>
External assessment

This is a summary of the type and availability of external assessment, which is of units making up 66% of the total qualification GLH. See Section 5 and the units and sample assessment materials for more information.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type</th>
<th>Availability</th>
</tr>
</thead>
</table>
| Unit 1: Construction Principles | • Written exam.
 • 1 hour 30 minutes.
 • Written submission.
 • 75 marks. | Jan and May/June
 First assessment
 May/June 2018 |
| Unit 2: Construction Design | • A task set and marked by Pearson and completed under supervised conditions.
 • Before the supervised assessment, learners will be given information to research in approximately three hours in a two-week period timetabled by Pearson.
 • The supervised assessment is 12 hours in a two-week period timetabled by Pearson.
 • Written submission of evidence.
 • 63 marks. | May/June
 First assessment
 May/June 2018 |

Synoptic assessment

The mandatory synoptic assessment requires learners to apply learning from across the qualification to the completion of a defined vocational task. Within the assessment for Unit 2: Construction Design learners complete a task to demonstrate the application of skills involved in the design and construction of low- and medium-rise buildings and structures, evaluating the effectiveness of a design solution against client requirements and external constraints. This draws together underpinning knowledge of how to go through clear design processes, along with practical knowledge of how to use different manual and computer-aided methods. Learners complete the task using knowledge and understanding from their studies of the sector and apply both transferable and specialist knowledge and skills.

In delivering the unit you need to encourage learners to draw on their broader learning so they will be prepared for the assessment.

Employer involvement in assessment and delivery

You need to ensure that learners on this qualification have a significant level of employer involvement in programme delivery or assessment. See Section 4 for more information.
3 Units

Understanding your units

The units in this specification set out our expectations of assessment in a way that helps you to prepare your learners for assessment. The units help you to undertake assessment and quality assurance effectively.

Each unit in the specification is set out in a similar way. There are two types of unit format:
- internal units
- external units.

This section explains how the units work. It is important that all teachers, assessors, internal verifiers and other staff responsible for the programme review this section.

Internal units

<table>
<thead>
<tr>
<th>Section</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit number</td>
<td>The number is in a sequence in the sector. Numbers may not be sequential for an individual qualification.</td>
</tr>
<tr>
<td>Unit title</td>
<td>This is the formal title that we always use and it appears on certificates.</td>
</tr>
<tr>
<td>Level</td>
<td>All units are at Level 3 on the national framework.</td>
</tr>
<tr>
<td>Unit type</td>
<td>This shows if the unit is internal or external only. See structure information in Section 2 for full details.</td>
</tr>
<tr>
<td>GLH</td>
<td>Units may have a GLH value of 120, 90 or 60 GLH. This indicates the numbers of hours of teaching, directed activity and assessment expected. It also shows the weighting of the unit in the final qualification grade.</td>
</tr>
<tr>
<td>Unit in brief</td>
<td>A brief formal statement on the content of the unit that is helpful in understanding its role in the qualification. You can use this in summary documents, brochures etc.</td>
</tr>
<tr>
<td>Unit introduction</td>
<td>This is designed with learners in mind. It indicates why the unit is important, how learning is structured, and how learning might be applied when progressing to employment or higher education.</td>
</tr>
<tr>
<td>Learning aims</td>
<td>These help to define the scope, style and depth of learning of the unit. You can see where learners should be learning standard requirements (‘understand’) or where they should be actively researching (‘investigate’). You can find out more about the verbs we use in learning aims in Appendix 2.</td>
</tr>
<tr>
<td>Summary of unit</td>
<td>This new section helps teachers to see at a glance the main content areas against the learning aims and the structure of the assessment. The content areas and structure of assessment are required. The forms of evidence given are suitable to fulfil the requirements.</td>
</tr>
<tr>
<td>Content</td>
<td>This section sets out the required teaching content of the unit. Content is compulsory except when shown as ‘e.g.’. Learners should be asked to complete summative assessment only after the teaching content for the unit or learning aim(s) has been covered.</td>
</tr>
<tr>
<td>Section</td>
<td>Explanation</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Assessment criteria</td>
<td>Each learning aim has Pass and Merit criteria. Each assignment has at least one Distinction criterion. A full glossary of terms used is given in Appendix 2. All assessors need to understand our expectations of the terms used. Distinction criteria represent outstanding performance in the unit. Some criteria require learners to draw together learning from across the learning aims.</td>
</tr>
<tr>
<td>Essential information for assignments</td>
<td>This shows the maximum number of assignments that may be used for the unit to allow for effective summative assessment, and how the assessment criteria should be used to assess performance.</td>
</tr>
<tr>
<td>Further information for teachers and assessors</td>
<td>The section gives you information to support the implementation of assessment. It is important that this is used carefully alongside the assessment criteria.</td>
</tr>
<tr>
<td>Resource requirements</td>
<td>Any specific resources that you need to be able to teach and assess are listed in this section. For information on support resources see Section 10.</td>
</tr>
<tr>
<td>Essential information for assessment decisions</td>
<td>This information gives guidance for each learning aim or assignment of the expectations for Pass, Merit and Distinction standard. This section contains examples and essential clarification.</td>
</tr>
<tr>
<td>Links to other units</td>
<td>This section shows you the main relationship among units. This section can help you to structure your programme and make best use of materials and resources.</td>
</tr>
<tr>
<td>Employer involvement</td>
<td>This section gives you information on the units that can be used to give learners involvement with employers. It will help you to identify the kind of involvement that is likely to be successful.</td>
</tr>
</tbody>
</table>
External units

<table>
<thead>
<tr>
<th>Section</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit number</td>
<td>The number is in a sequence in the sector. Numbers may not be sequential for an individual qualification.</td>
</tr>
<tr>
<td>Unit title</td>
<td>This is the formal title that we always use and it appears on certificates.</td>
</tr>
<tr>
<td>Level</td>
<td>All units are at Level 3 on the national framework.</td>
</tr>
<tr>
<td>Unit type</td>
<td>This shows if the unit is internal or external only. See structure information in Section 2 for full details.</td>
</tr>
<tr>
<td>GLH</td>
<td>Units may have a GLH value of 120, 90 or 60 GLH. This indicates the numbers of hours of teaching, directed activity and assessment expected. It also shows the weighting of the unit in the final qualification grade.</td>
</tr>
<tr>
<td>Unit in brief</td>
<td>A brief formal statement on the content of the unit.</td>
</tr>
<tr>
<td>Unit introduction</td>
<td>This is designed with learners in mind. It indicates why the unit is important, how learning is structured, and how learning might be applied when progressing to employment or higher education.</td>
</tr>
<tr>
<td>Summary of assessment</td>
<td>This sets out the type of external assessment used and the way in which it is used to assess achievement.</td>
</tr>
<tr>
<td>Assessment outcomes</td>
<td>These show the hierarchy of knowledge, understanding, skills and behaviours that are assessed. Includes information on how this hierarchy relates to command terms in sample assessment materials (SAMs).</td>
</tr>
<tr>
<td>Essential content</td>
<td>For external units all the content is obligatory, the depth of content is indicated in the assessment outcomes and sample assessment materials (SAMs). The content will be sampled through the external assessment over time, using the variety of questions or tasks shown.</td>
</tr>
<tr>
<td>Grade descriptors</td>
<td>We use grading descriptors when making judgements on grade boundaries. You can use them to understand what we expect to see from learners at particular grades.</td>
</tr>
<tr>
<td>Key terms typically used in assessment</td>
<td>These definitions will help you analyse requirements and prepare learners for assessment.</td>
</tr>
<tr>
<td>Resources</td>
<td>Any specific resources that you need to be able to teach and assess are listed in this section. For information on support resources see Section 10.</td>
</tr>
<tr>
<td>Links to other units</td>
<td>This section shows the main relationship among units. This section can help you to structure your programme and make best use of materials and resources.</td>
</tr>
<tr>
<td>Employer involvement</td>
<td>This section gives you information on the units that can be used to give learners involvement with employers. It will help you to identify the kind of involvement that is likely to be successful.</td>
</tr>
</tbody>
</table>
Index of units

This section contains all the units developed for this qualification. Please refer to pages 4–5 to check which units are available in all qualifications in the Construction and the Built Environment sector.

Unit 1: Construction Principles 23
Unit 2: Construction Design 35
Unit 4: Construction Technology 47
Unit 5: Health and Safety in Construction 57
Unit 1: Construction Principles

Level: 3
Unit type: External
Guided learning hours: 120

Unit in brief
Learners demonstrate an understanding of the underlying principles used in the design, construction and refurbishments of buildings and infrastructure.

Unit introduction
Roles in the construction and built environment industry require the application of knowledge and understanding related to the design of structures and infrastructure, selection and use of construction materials, and the provision of human comfort in buildings. Whether you want to become a site manager, designer, engineer or surveyor, you will apply the knowledge and skills to ensure that materials are fit for purpose and that specified quantities are ordered and used on a construction project.

In this unit, you will develop the skills needed to solve a variety of practical construction problems by applying scientific knowledge and carrying out mathematical and statistical techniques. You will learn about the science underpinning the manufacture, properties and degradation of construction materials. You will apply mathematical principles and techniques to carry out calculations that determine how materials behave under the action of forces or loads when used as structural members, and draw conclusions regarding whether a material is fit for purpose. You will understand scientific principles and apply them to heat loss, sound reduction and lighting levels to provide human comfort during structure design, build and refurbishment.

This unit gives a foundation to help you progress to a wide range of construction-related higher education qualifications, and will support you in a variety of construction roles such as technician, and Higher Level Apprenticeships.

Summary of assessment
This unit is assessed through a written examination set and marked by Pearson.

The examination is 1 hour and 30 minutes. During the supervised assessment period, learners will be assessed on their knowledge of construction materials and their properties, application of mathematics in construction contexts, and the provision of human comfort in buildings. The number of marks for the paper is 75.

The assessment availability is January and May/June each year. The first assessment availability is May/June 2018.

Sample assessment materials will be available to help centres prepare learners for assessment.
Assessment outcomes

AO1 Demonstrate knowledge of construction terms, standards, concepts, methods and processes
Command words: calculate, describe, explain, identify, state/give
Marks: ranges from 1 to 4 marks

AO2 Demonstrate understanding of construction standards, concepts, methods and processes in context, in order to find solutions to real-life construction problems
Command words: calculate, describe, discuss, draw, explain, find
Marks: ranges from 1 to 8 marks

AO3 Analyse and evaluate information in order to recommend and justify the use of technologies and methodologies to solve construction problems in context
Command words: analyse, discuss, evaluate
Marks: ranges from 6 to 12 marks

AO4 Make connections between information, technologies and methodologies to resolve construction problems
Command words: analyse, discuss, evaluate
Marks: ranges from 8 to 12 marks
Essential content

The essential content is set out under content areas. Learners must cover all specified content before the assessment.

A Construction materials

The use of materials in construction, including their manufacture, the properties of materials linked to their use, the degradation of materials, the effects of temperature change on materials and the behaviour of materials under different loading conditions.

A1 Properties of materials

Material properties, terminology and use in construction:
- mass and density
- strength – tensile, compressive, shear, bending
- hardness
- toughness
- malleability
- workability
- stiffness
- fatigue and creep
- fire resistance
- electrical conductivity and conductance
- thermal conductivity and conductance
- resistance to moisture penetration
- resistance to vapour penetration
- resistance to degradation
- embedded energy
- recycling potential.

A2 Properties of construction materials

Key properties of construction materials, how they work together to provide composite performance and properties, how they impact on performance in use and on the specification of materials for different scenarios and levels of exposure to the elements.
- Bricks – facings, Class A engineering, Class B engineering, commons.
- Concrete – prescribed mixes, design mixes, mixes by ratio of volume, mixes by ratio of weight, screed mixes.
- Concrete blocks – aerated, high density, insulated.
- Mortar mixes – cement mortar, lime mortar, cement lime mortar, coloured mortar.
- Sand – building, sharp, silver.
- Plasterboard.
- Glass and glass finishes – smart, laminated, tempered, float, clear, obscured.
- Insulation materials – fibreglass, expanded polystyrene, Celotex, mineral wool, cellulose, straw, polyurethane.
- Plastics used for polythene damp-proof membranes (DPM), damp-proof courses (DPC).
- Plastics used for doors and window frames, soffits, bargeboards, fascia, guttering, Polyvinylchloride (PVC), unplasticised Polyvinylchloride (uPVC).
- Timber and manufactured boards – hardwoods, softwoods, plywood, chipboard, particle board, medium-density fibreboard (MDF).
- Roofing materials – slate, concrete, pantile, roofing felt, thatch, ridge, lead flashing.
- Engineered timber – glulam beams, engineered joists.
- Steel – mild, stainless, high strength.
- Aluminium alloys.
A3 Manufacturing and processing of construction materials

The manufacturing and processing of construction materials and how this impacts on their key properties and fitness for purpose, including sustainability issues and embedded energy.

- Cements – ordinary Portland and sulphate-resisting cement.
- Steels – mild and stainless.
- Concrete.
- Bricks – engineering and facing bricks.
- Concrete blocks – aerated, high density, insulated.
- Aluminium alloys.
- Glass – laminated, tempered, float.

A4 Degradation of construction materials

The impact of the environment on building materials for various scenarios, degradation methods and types, preventive and reduction measures, and impact of failure of a single material in a composite element.

- Sources of degradation and their cause:
 - natural agents – ageing, ultraviolet (UV) radiation
 - timber infestation – insect attack, fungal
 - timber decay – wet rot, dry rot, lichens and mosses
 - moisture movement – capillary action, shrinkage
 - exposure conditions – weathering, freeze-thaw, thermal ageing, creep, humidity, loadings
 - chemical degradation – acid rain, sulphate, alkalis, leaching
 - corrosion in metals – oxidation.
- Remedial measures to prevent and reduce degradation and their benefits and drawbacks:
 - use of special paints
 - protective coatings.
- Material failure:
 - concrete and reinforced concrete
 - brickwork
 - timber – external and internal applications
 - steel
 - mortars.

A5 Effects of temperature changes on construction materials

- Types of heat: latent, sensible.
- The effect of temperature change on the properties of materials:
 - changes of state
 - evaporation
 - expansion and contraction.

A6 Behaviour of structural members under load

- Types of structural members:
 - beams, lintels
 - columns, walls and frames
 - struts and ties.
- The effect of different loading conditions and potential failure of beams, lintels, columns, walls, frames, struts and ties in the following materials:
 - concrete
 - reinforced concrete
 - timber
 - steel.
• Types, configuration and effect of loads:
 o dead and live load
 o imposed and wind loads
 o point and distributed loads.
• Characteristics, properties and use of types of supports – pinned, roller, hinged and fixed.
• Effects of structural failure on structural members.

B Solving practical construction problems

B1 Application of mathematical and statistical methods and techniques used in practical construction contexts

Recall, perform procedures, demonstrate an understanding of and analyse information in a variety of construction contexts by applying mathematical and statistical techniques, including the following.

• Algebraic techniques:
 o linear equations of the form \(y = mx + c \)
 o pair of simultaneous linear equations in two unknowns
 o factorisation and quadratics:
 – multiply expressions in brackets by a number, symbol or by another expression in a bracket
 – by extraction of a common factor \(a(x + y), a(x + 2) + b(x + 2) \)
 – by grouping \(ax - ay + bx - by \)
 – quadratic expressions \(a^2 + 2ab + b^2 \)
 – roots of an equation, including quadratic equations with real roots by factorisation, use of quadratic formula, completing the square
 o rearranging formulae to change subject of formulae, complex formulae involving exponents, roots and trigonometric identities
 o substituting values into and evaluating formulae.
• Accuracy of calculations:
 o use of significant figures
 o use of approximation to check a calculation
 o effects of rounding-off errors.
• Trigonometric techniques:
 o trigonometric functions: sine, cosine, tangent ratios
 o application of trigonometry to determine dimensions in 2D and 3D:
 – in surveying
 – in setting out
 – other practical contexts.
• Circular measure:
 o radian measure
 o conversion of degree measure to radian measure and vice versa
 o arc length \(s = r\theta \)
 o area of sector \(A = \frac{1}{2} r^2 \theta \)
• Geometric techniques:
 o properties of points, lines, angles, circles
 o Pythagoras’ theorem.
• Graphical techniques:
 o Cartesian coordinates
 o intersections of graph lines with axes
 o gradients of straight lines
 o equations of graphs: straight line
 o areas under graphs: straight line
 o interpolation and extrapolation.
• Mensuration techniques for quantity surveying and buying:
 o calculation of perimeters, centre lines, areas, surface areas and volumes of:
 - rectangles, squares, triangles, circles, trapeziums
 - prisms, spheres, pyramids, cones, cylinders
 - compound and irregular shapes and objects.
• Statistical techniques:
 o types of data: discrete data, continuous data, ungrouped data, grouped data
 o methods of visual presentation of statistics and data, interpretation and production
 of: line graphs, bar charts, scatter diagrams, pie charts, histograms, distribution
 curve, Venn diagrams, tables
 o processing large groups of data to achieve mean, median, mode
 o statistical methods to present data and make decisions based on them
 o interpretation of climate maps.
• Application of mathematical techniques used in structural analysis:
 o concurrent and non-concurrent coplanar forces
 o relationship between force (load), mass and acceleration due to gravity
 o forces: tension, compression, shear
 o application of Hooke’s law $F = -kx$ and $F = kx$
 o stress, strain and modulus of elasticity
 o loading as the result of gravitational attraction
 o shear force and bending moment in a beam and its effect on the beam cross section
 o equilibrium conditions to ensure stability of a beam
 o determination of support reactions for simply supported beams with point and
distributed loads.
• Application of mathematical techniques involving the human comfort effect of temperature
 on construction materials while in situ:
 o calculating the effect of temperature change on materials
 o coefficients of thermal expansion application and its significance for selecting
 fit-for-purpose construction materials and details
 o calculation of U-value
 o calculating required insulation thickness
 o calculation of structural temperature profiles
 o calculation of dew-point temperature profiles.
• Calculation of sound absorption coefficients, reverberation, actual and optimum
 reverberation times.
• Application of mathematical techniques to determine lighting requirements:
 o inverse square law of illumination:
 \[E = \frac{I}{r^2} \]
 o cosine law of illumination:
 \[E = \frac{I}{d^2 \cos \theta} \]
 o lumen method of design
 o daylight factor.
• Application of the desktop method to determine daylight factor.
C Human comfort

The impact of heat, light and sound on human comfort in the built environment.

C1 Heat

The impact of the natural and built environment on human comfort and the provision of comfortable living and working environments.

- Scientific principles and their application in the built environment:
 - air temperature
 - mean radiant temperature
 - relative humidity
 - air movement
 - dry and wet bulb temperatures
 - mechanisms of heat transfer:
 - conduction
 - convection
 - radiation.

- Measurement instruments and their application in heat in determining human comfort conditions:
 - thermometer
 - globe thermometer
 - hygrometer
 - anemometer
 - electronic control systems
 - thermostats
 - remote monitoring systems, e.g. smartphone applications to monitor and control temperature.

- Acceptable thermal comfort parameters according to:
 - current building regulations
 - combination of personal factors and thermal comfort requirements:
 - age
 - gender
 - clothing
 - state of health
 - level of activity
 - metabolic rate.

- Principles of heat losses and gains in buildings and methods to control them to provide human comfort in buildings:
 - how heat is lost in a building:
 - fabric heat losses
 - ventilation heat losses
 - thermal bridges and their impact on heat losses
 - contribution of air changes to heat losses
 - factors contributing to heat gains and losses:
 - insulation of building
 - surface area of the external shell
 - exposure and impact of local climatic conditions on a building
 - temperature difference between inside and outside
 - air change rate
 - building use
 - thermal conductivity and thermal resistance
 - significance of the insulating material and its thickness
 - determination of fabric and ventilation heat losses.
• Heat loss control methods (alternative: methods for controlling heat loss from buildings):
 o roof, wall and floor insulation
 o double/triple glazing, low emissivity glass
 o secondary glazing
 o draught reduction
 o insulated building materials
 o location and type of heating installations in a building.

• The source and causes of condensation, the consequences of its occurrence and potential impact on the building fabric and methods of control to provide human comfort in buildings:
 o sources of water vapour in buildings
 o causes and effects of condensation in buildings
 o impact of structural temperature profiles
 o impact of dew-point temperature profiles
 o prediction and prevention of condensation
 o interstitial condensation
 o methods for controlling condensation in buildings:
 - air conditioning
 - heating and ventilation
 - dehumidification
 - extractor fans.

C2 Acoustics

Scientific principles of sound, its relation to human comfort and the acoustic fitness for purpose of the area relative to its intended use.

• Scientific principles:
 o difference between sound and noise
 o frequency of sound
 o standard units
 o addition and averaging of decibel levels
 o sound reduction indices
 o reverberation times.

• Acceptable acoustic comfort parameters of an area relative to its intended use:
 o current building regulations
 o noise criteria indices
 o personal factors:
 - age
 - previous exposure to noise
 - state of health
 - activity.

• Measurement of sound levels.
• Difference between sound insulation and sound absorption.
• Difference between airborne and impact sound.
• Issues associated with flanking transmission.
• Reasons why sound insulation and sound reduction is required.
• Understanding and application of sound insulation approaches:
 o source-path-receiver approach
 o improving structural elements
 o controlling flanking sound
 o use of appropriate materials to reduce sound.
C3 Lighting

Scientific principles and the provision of appropriate lighting levels and type for various activities in the built environment.

- Scientific principles:
 - differences between natural and artificial light
 - illuminance levels
 - daylight factors
 - glare indices
 - direct and reflected light
 - power of a light source
 - flow of light energy
 - illumination of surface.

- Standard units of measurement:
 - candela – power of a light source
 - lumen – flow of light energy
 - lux – illumination on surface.

- Acceptable illuminance levels for different activities and building use.
- Variation of daylight factors in a room.
- Principal components of daylight factor:
 - sky component (SC)
 - externally reflected component (ERC)
 - internally reflected component (IRC).

- Artificial lighting sources:
 - incandescent lamps
 - compact fluorescent lamps (CFLs)
 - fluorescent tubes
 - discharge lamps
 - halogen lamps
 - ballast lamps
 - light-emitting diodes (LEDs).
Grade descriptors

To achieve a grade learners are expected to demonstrate these attributes across the essential content of the unit. The principle of best fit will apply in awarding grades.

Level 3 Pass

Learners will be able to apply their understanding of construction principles to develop a solution to given situations and information in context. Learners are able to use and apply basic construction, human factors and mathematics to solve simple and familiar construction problems directly. They can provide responses showing understanding and analysis of basic and familiar construction problems. They can interpret and analyse drawings, diagrams, graphical information and meteorological information, and use their knowledge and understanding to solve basic and familiar problems. They are able to use their knowledge of construction to deconstruct given scenarios to produce solutions with interpretation. They often use appropriate construction and human comfort terminology in their responses. Learners will apply their knowledge and understanding of basic construction, human comfort and applied mathematical principles to make recommendations and propose evolutionary or analytical solutions to construction problems.

Level 3 Distinction

Learners will be able to use and apply advanced construction, human factors and mathematical principles to solve complex and unfamiliar construction problems directly, indirectly and synoptically. They can provide balanced responses showing developed understanding and evaluation of complex familiar and unfamiliar construction problems. They can interpret and evaluate drawings, diagrams, graphical information and meteorological information, and use their knowledge and understanding to solve complex, familiar and unfamiliar problems. They use appropriate and technically accurate construction and human factors terminology consistently. They are able to synthesise knowledge and understanding of construction to deconstruct given scenarios, drawing on various sources of information to develop effective solutions with justification. Learners can propose justified synoptic solutions to problems, drawing on their knowledge and understanding of construction, human comfort and applied mathematical principles to make recommendations and propose evolutionary or analytical solutions to construction problems. Learners are able to evaluate the effectiveness of solutions to make justified recommendations on their development and future actions that can be taken.
Key words typically used in assessment

The following table shows the key words that will be used consistently by Pearson in our assessments to ensure learners are rewarded for demonstrating the necessary skills.

Please note: the list below will not necessarily be used in every paper/session and is provided for guidance only.

<table>
<thead>
<tr>
<th>Command or term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse</td>
<td>Learners examine in detail a scenario or problem to discover its meaning or essential features. Learners will break down the problem into its parts and show how they interrelate. This may include the analysis of graphs to solve construction problems. There is no requirement for any conclusion.</td>
</tr>
<tr>
<td>Calculate</td>
<td>Learners apply some form of mathematical process to give an answer. Learners judge the number or amount of something by using the information they already have and add, subtract, multiply, or divide numbers, and apply formula to solve mathematical problems.</td>
</tr>
<tr>
<td>Describe</td>
<td>Learners give a clear, objective account in their own words, or highlight a number of key features of a given topic to show recall and/or application of relevant features and information about a subject.</td>
</tr>
<tr>
<td>Discuss</td>
<td>Learners investigate a problem or scenario, showing reasoning or argument. There is no requirement for any conclusion.</td>
</tr>
<tr>
<td>Draw</td>
<td>Learners produce hand-drawn graphical information or a drawing to show their understanding of and/or solve a construction problem.</td>
</tr>
<tr>
<td>Evaluate</td>
<td>Learners review and synthesise information to provide a supported judgement about the topic or problem. Typically a conclusion will be required.</td>
</tr>
<tr>
<td>Explain</td>
<td>Learners make a series of linked points and/or justify or expand on an identified point.</td>
</tr>
<tr>
<td>Find</td>
<td>Learners discover the facts or truth about something, typically from information contained in a diagram, graph or chart.</td>
</tr>
<tr>
<td>Identify</td>
<td>Learners assess factual information, typically when making use of given stimuli. Requires a single word or short-sentence answer.</td>
</tr>
<tr>
<td>State/Give</td>
<td>Learners assess factual information. Learners declare definitely or specifically in a single word or short-sentence answer.</td>
</tr>
</tbody>
</table>
Links to other units

This unit has links to all other units in the qualification.

Employer involvement

Centres can involve employers in the delivery of this unit if there are local opportunities to do so. There is no specific guidance related to this unit.
Unit 2: Construction Design

Level: 3
Unit type: External
Guided learning hours: 120

Unit in brief

Learners will apply the principles and practice of design and construction for low- and medium-rise buildings and structures.

Unit introduction

Almost all human activity takes place in and around buildings and structures that are, for example, places of shelter, work, worship, culture and sport, and these places have a strong influence on our quality of life. Buildings are deceptively complex and expensive to build and maintain, so their design requires careful consideration to ensure that they are fit for purpose and meet user requirements. Creating buildings and structures is a unique process that requires input from a team of built environment professionals, who take into consideration a wide variety of factors to resolve problems and meet client requirements.

In this unit, you will learn the principles and practice involved in the design and construction of low- and medium-rise buildings and structures, and gain an understanding of how design is influenced by client requirements and external constraints. You will consider the stages involved in the design and construction process and gain an understanding of the use of design techniques, including sketching and computer-aided design (CAD) to provide efficient methods of designing, constructing and maintaining structures over their life cycle. To complete the assessment task within this unit, you will need to draw on your learning from across your programme.

This unit will give you the knowledge and understanding of design and construction that will support your progression to employment as an apprentice or trainee construction professional, or entry to a construction-related higher education programme.

Summary of assessment

This unit is assessed under supervised conditions. Learners will be given a scenario two weeks before a supervised assessment period in order to carry out research.

The supervised assessment period is a maximum of 12 hours and can be arranged over a number of sessions. During the supervised assessment period, learners will be given a set task that will assess their ability to produce designs to meet client requirements. Pearson sets and marks the task.

The number of marks for the unit is 63.

The assessment availability is May/June each year. The first assessment availability is May/June 2018.

Sample assessment materials will be available to help centres prepare learners for assessment.
Assessment outcomes

AO1 Demonstrate knowledge and understanding of construction design and build concepts and processes

AO2 Apply knowledge and understanding of construction design and build concepts and processes to design a building to meet an initial project brief

AO3 Analyse site, client and construction information to make decisions in order to produce a building design to meet an initial project brief

AO4 Be able to develop a reasoned design solution for a building to meet an initial project brief
Essential content

The essential content is set out under content areas. Learners must cover all specified content before the assessment.

A The construction design process

A1 Stages and tasks involved in the design process

The application of Stages 1–4 of the Royal Institute of British Architects (RIBA) Plan of Work 2013 to the tasks associated with the design of low- and medium-rise domestic, commercial and industrial buildings.

- Preparation and brief.
- Concept design.
- Developed design.
- Technical design.

A2 Factors that influence the design process

Requirements and constraints and their impact on the initial project brief and design process for combinations of rural, urban, greenfield and brownfield settings.

- Client requirements for the project outcomes:
 - building use:
 - to include domestic, industrial, commercial, retail, health, cultural and recreation
 - how the building operates within its defined use
 - the project spatial requirements – building size, layout, circulation space, number of floors, number and use of rooms
 - flexibility and remodelling potential
 - future extension potential to meet residential needs and business expansion
 - external and internal aesthetics, types and use of materials
 - sustainability, energy efficiency, alternate types of energy sources
 - age demographic of the building user(s)
 - target market sector
 - needs of different building users
 - security requirements for the building and client operations
 - corporate image and branding requirements.

- Site information and constraints:
 - site features – location, size, configuration, orientation, access, topography
 - borehole report used to provide information on geotechnical and ground conditions
 - ground contamination
 - building services availability
 - existing buildings, structures
 - neighboring structures and the need for temporary and permanent support
 - existing underground services
 - trees
 - rights of way
 - underground transport.
• Planning constraints:
 o planning consent/approval
 o local plan requirements
 o design sympathetic to local environment
 o planning objections and pressure groups
 o listed building consent
 o protection of greenbelt land
 o conservation areas, Areas of Outstanding Natural Beauty (AONB), Site of Special Scientific Interest (SSSI)
 o tree preservation orders (TPO), contaminated land, flood risk areas.

• Statutory constraints and their requirements, including subsequent updates:
 o Construction (Design and Management) Regulations 2015
 o building regulations approval
 o Party Wall etc. Act 1996
 o Disability Discrimination Acts 1995 and 2005
 o Equality Act 2010
 o Landlord and Tenant Act 1985
 o restrictive covenants on land and property.

• Environmental constraints:
 o avoidance of air, water and noise pollution
 o National Planning Policy Framework (NPPF) 2012 with reference to:
 – Part 6 Delivering a wide choice of high quality homes
 – Part 7 Requiring good design
 – Part 9 Protecting Green Belt land
 – Part 10 Meeting the challenge of climate change, flooding and coastal change
 – Part 11 Conserving and enhancing the natural environment
 – Part 12 Conserving and enhancing the historic environment
 o Part 1 of the Wildlife and Countryside Act 1981, with reference to protected species and habitat conservation
 o the findings of Environmental Impact Assessments (EIAs) and their use in developing designs for a project.

• Social constraints:
 o neighbour’s rights
 o local community objections
 o green space requirements
 o environmental requirements
 o mixed and balanced development.

• Project budget and economic constraints:
 o cost planning
 o available funds
 o source of additional funding for business premises – grants, government incentives, European funding
 o local land prices
 o first-time buyer residential accommodation – borrowing potential, shared-ownership schemes, Help to Buy scheme, government incentives for developers
 o life cycle costs.
B Project information and building design production

B1 Project information
Information used in the production of building designs.
- Client requirements.
- Site constraints.
- Planning constraints.
- Statutory constraints.
- Environmental constraints.
- Social constraints.
- Economic constraints.

B2 Initial project brief
- The initial project brief’s purpose and its application.
- Content of an initial project brief:
 - spatial requirements
 - desired project outcomes
 - site information
 - budget requirements.
- Use of an initial project brief to generate and develop design ideas and specifications.
- Completion of an initial project brief: use of appropriate tone and technical language for target audience.

B3 Design production
Production of creative and innovative outline solutions and designs to meet initial project brief requirements and their presentation requirements for client and design team use.
- Production of designs for low- and medium-rise domestic, commercial and industrial buildings.
- Outline solution – to communicate use of space and appropriate form of construction.
- 2D and 3D sketches of initial ideas, to include internal and external views, plans and elevations:
 - freehand sketched
 - single-point perspective
 - two-point perspective
 - planometric views
 - isometric views
 - use of line thickness to convey a 3D effect
 - use of shade and light direction
 - freehand rendering techniques.
- Clear communication using technical annotations.
- Clear communication of key features, to include external fabric, roof type, service access, circulation space, windows, doors etc.

B4 Computer-aided design
- Use of computer-aided design (CAD) to produce virtual models and interiors.
- Setting up CAD projects:
 - number of floors
 - floor levels
 - linking elements, to include top and bottom anchors
 - building footprint
 - component libraries
 - saving in an appropriate format.
• Use of basic CAD methodologies:
 o dimensional control, sizing and scale
 o detail levels, to include appropriate level for drawing use and audience:
 - fine
 - medium
 - coarse
 o use of ‘hidden element’ features
 o setting up and drawing composite elements:
 - walls
 - floors
 - roofs
 o standard opening components, placing and positioning:
 - doors, to include external, internal, garage and industrial
 - windows
 o inclusion and placing of fixtures and fittings:
 - stairs
 - fitted units and fitted furniture
 - plumbing and sanitary ware fixtures
 - light fittings
 o furnishing and lighting for selected internal area.

• External site area:
 o setting up ground area
 o surface effects, to include natural and built environment
 o contours, relief and topography
 o inclusion of features, to include street furniture, cars, etc.
 o inclusion of landscaping and planting features.

• Use and manipulation of CAD software to produce virtual models:
 o 3D digital project information:
 - 3D views
 - 3D perspective effects
 - surface detailing and effects
 o 2D digital project information, to include appropriate scale and level of detail:
 - plans
 - elevations
 - sections.

• 3D manipulation:
 o orientation and rotation of images
 o zooming
 o detail level.

• Rendered images:
 o camera views, to include camera position, angle of coverage, shadow effects
 o setting up rendered views:
 - internal lighting effects
 - external lighting effects
 - weather effects
 - seasonal effects
 - sun position
 - lighting/sun on or off
 - detail level
 o processing, saving and printing of rendered images.
• Extraction of 2D and 3D drawings:
 o plans
 o elevations
 o cross sections
 o 3D models.
• Drawing output:
 o setting up borders and title block
 o orthographic drawing conventions, to include third angle
 o scale and placement of images
 o printer and screen outputs.

C Construction methods and techniques

Construction methods and techniques used in the design and construction of low- and medium-rise domestic, commercial and industrial buildings.

C1 Forms of low- and medium-rise structures
• Functional requirements of key primary and secondary elements.
• Types, characteristics and application of construction techniques and methods for:
 o traditional construction
 o timber frame construction
 o steel frame construction
 o light steel frame construction
 o concrete frame construction
 o modern methods of construction (MMC)
 o structural insulated panels (SIPs)
 o Passivhaus construction.

C2 Sub-structure construction
• Types, purpose and use of methods of site investigation and analysis:
 o site surveys – desk, walk-over, measured, survey reports
 o soil investigation – bore holes, trial pits, auger, test data/results/reports
 o soil assessment – classification, particle size distribution, compressive/tensile/shear strength
 o groundwater – water table, contamimates, dewatering techniques/control.
• Factors and principles affecting foundation design:
 o structural requirements – building type, loading types, load transmission
 o ground load bearing capacity – soil type/condition
 o differential settlement and ground heave – made up ground, subsidence, underground features/mining, shrinkable clay, frost, trees, hard standings.
• Purpose, types, sizing, construction methods/techniques and details of foundations:
 o strip – traditional, deep, narrow, wide, stepped, reinforced
 o raft – edge thickening, edge beam, reinforced
 o pad – isolated, combined, reinforced
 o pile – replacement, displacement, end bearing, friction, pile caps, edge beams, reinforced.
C3 Superstructure construction
The construction requirements and detailing of the superstructure and external envelope, and their suitability for use in different scenarios.

- External walls:
 - solid masonry, cavity walls, curtain walls, infill walling, rain screen, panel, cladding, profiled sheets, rammed earth, straw bale
 - formation of openings, heads, sills, jambs/reveals, thresholds
 - weather tightness
 - thermal and acoustic insulation
 - finishes.

- Internal walls:
 - separating/party, partition/compartment
 - loadbearing, non-loadbearing
 - finishes.

- Structural frames:
 - steel, reinforced concrete, timber, structural insulated panels, light gauge steel
 - fire protection.

- Ground floors:
 - solid and suspended
 - in-situ concrete, beam and block, timber
 - thermal insulation
 - damp proofing
 - finishes
 - upper floors – composite concrete/profiled steel, pre-cast concrete slabs, in-situ concrete, beam and block, timber/engineered timber
 - fire protection.

- Roofs:
 - flat/pitched forms and terminology
 - traditional, trussed rafter, profiled decking, lattice frame, portal frame
 - weather protection, coverings.

- Stairs and landings:
 - stair and landing terminology/regulations
 - timber, in-situ concrete, precast concrete, steel.

- Doors and windows:
 - types, construction
 - uses in fire compartmentalization and escape.

C4 Sustainability
Sustainability methods and techniques used in the design of modern construction projects and in the refurbishment, remodelling and extension of existing buildings to reduce pollution, the impact on the environment and the carbon footprint of the building.

- Passive solar gain.
- Passive stack ventilation.
- Water use reduction methods:
 - grey water systems
 - rainwater harvesting
 - water efficiency measures and fittings.
- Waste reduction measures:
 - segregation of waste
 - recycling.
• Use of alternative energy sources:
 o ground source – ground source heat pump (horizontal and vertical)
 o air source – air source heat pump (indoor heat exchanger, outdoor heat exchanger, air to air, air to water)
 o wind – micro wind generator (horizontal axis; vertical axis)
 o solar – solar photovoltaic (PV) panels, solar panel (thermal).
• Energy-efficient electrical and mechanical services installations.
• Sustainable and low embodied energy materials.
• Insulation methods:
 o floors
 o walls
 o roofs.
• Sustainable urban drainage systems.
• Sustainable landscape design.
• Building Research Establishment Environmental Assessment Method (BREEAM):
 o benefits of
 o ratings and percentage of UK buildings in each category.
Grade descriptors

To achieve a grade learners are expected to demonstrate these attributes across the essential content of the unit. The principle of best fit will apply in awarding grades.

Level 3 Pass

Learners will demonstrate knowledge and understanding of the factors that influence design and development, with some consideration of how these impact on construction details. They will make some use of appropriate technical vocabulary in their work. They will be able to select, use and interpret relevant information in the context of a scenario to produce an initial project brief. They will be able to consider the spatial requirements of a project and consider suitable forms of construction to produce a design that communicates design intentions with clarity and addresses aspects of the initial project brief, with some use of annotations. They can produce a virtual model that addresses some aspects of the scenario requirements and provide printouts of 3D rendered views.

Level 3 Distinction

Learners will demonstrate a comprehensive knowledge and understanding of the factors that influence design and development, and consider in depth how these impact on construction details. They will make use of developed technical vocabulary in their work. They will be able to select, use and interpret most of the relevant information in the context of a scenario, showing a balanced consideration of this information to produce an initial project brief with minimal errors or omissions. They will be able to analyse the spatial requirements of a project and provide detailed consideration of suitable forms of construction to produce a design that communicates design intentions with clarity and comprehensively addresses the initial project brief. Learners use annotations that clearly explain the key features and operation of the design. They can produce an accurate and complete virtual model that appropriately addresses the scenario requirements and provide printouts of 3D rendered views.
Key words typically used in assessment

The following table shows the key words that will be used consistently by Pearson in our assessments to ensure learners are rewarded for demonstrating the necessary skills. Please note: the list below will not necessarily be used in every paper/session and is provided for guidance only.

<table>
<thead>
<tr>
<th>Command or term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borehole report</td>
<td>A report that provides information on the soil types and depths within the various strata underneath the surface of the site.</td>
</tr>
<tr>
<td>Client details</td>
<td>Information about the client and their requirements.</td>
</tr>
<tr>
<td>External envelope</td>
<td>The walls and roof forming the external surfaces of a building, including features such as the windows and external doors.</td>
</tr>
<tr>
<td>Ground conditions</td>
<td>Soil type, composition, contamination, level of compaction, water table level, level of saturation.</td>
</tr>
<tr>
<td>Ground water table</td>
<td>The depth below ground level of water contained in the ground.</td>
</tr>
<tr>
<td>Initial project brief</td>
<td>A document providing information relating to the spatial requirements, desired project outcomes, context of the site and budget.</td>
</tr>
<tr>
<td>Internal views</td>
<td>3D internal views of the building.</td>
</tr>
<tr>
<td>Medium rise</td>
<td>A building of three- to eight storeys in height.</td>
</tr>
<tr>
<td>Sketch</td>
<td>A freehand drawing/hand drawn with annotations, using pens and pencils.</td>
</tr>
<tr>
<td>Specification</td>
<td>Details of the building fabric that will achieve the required outcomes.</td>
</tr>
<tr>
<td>Sub-soil</td>
<td>The soil below the topsoil.</td>
</tr>
<tr>
<td>Virtual model</td>
<td>A 3D computer-generated image of a CAD design that can be rotated and viewed from any angle and can be used to generate rendered images of a project.</td>
</tr>
</tbody>
</table>
Links to other units

The assessment for this unit should draw on knowledge, understanding and skills developed from:

- Unit 1: Construction Principles
- Unit 4: Construction Technology
- Unit 5: Health and Safety in Construction
- Unit 6: Surveying in Construction
- Unit 7: Graphical Detailing in Construction
- Unit 8: Building Regulations in Construction
- Unit 11: Site Engineering for Construction
- Unit 14: Provision of Primary Services in Construction
- Unit 15: Further Mathematics for Construction
- Unit 21: Building Services Science
- Unit 23: Construction in Civil Engineering.

This unit would relate to the teaching of:

- Unit 19: Quantity Surveying.

Employer involvement

Centres can involve employers in the delivery of this unit if there are local opportunities to do so. There is no specific guidance related to this unit.
Unit 4: Construction Technology

Level: 3
Unit type: Internal
Guided learning hours: 60

Unit in brief

Learners examine the underlying principles and construction methods used in the construction of new buildings and their associated external works.

Unit introduction

The construction industry provides the population of the UK, and the world, with the built environment needed to sustain all aspects of life as we know it. Today’s buildings can use combinations of modern and traditional techniques and materials in their construction, and this unit will give you an understanding of the technology used in the design and construction of low-rise domestic and commercial buildings.

In this unit, you will examine various forms of low-rise construction and consider the most appropriate forms for differing site conditions and client requirements. You will gain an understanding of the different types of foundation that could be used on a project and the factors that influence its selection. You will investigate superstructure, external works design and construction, considering the most appropriate specifications and details for given scenarios.

This unit will give you the underlying knowledge and understanding of construction technology that supports a wide range of other units in this qualification. A sound knowledge of construction technology is an essential aspect of many roles, including architect, site manager, quantity surveyor, planner, buyer, estimator, etc.

Learning aims

In this unit you will:
A Understand common forms of low-rise construction
B Examine foundation design and construction
C Examine superstructure design and construction
D Examine external works associated with construction projects.
Summary of unit

<table>
<thead>
<tr>
<th>Learning aim</th>
<th>Key content areas</th>
<th>Recommended assessment approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Understand common forms of low-rise construction</td>
<td>A1 Forms of low-rise construction</td>
<td>A report to a client that covers the use of different structural forms for the proposed project, considering the effectiveness of each structural form.</td>
</tr>
<tr>
<td>B Examine foundation design and construction</td>
<td>B1 Subsoil investigation, B2 Subsoil improvement, B3 Design principles, B4 Types of foundation</td>
<td>A report for a given project scenario that covers the foundation design and different methods that can be used for the design and construction of the foundations, superstructures and external works.</td>
</tr>
<tr>
<td>C Examine superstructure design and construction</td>
<td>C1 Walls, C2 Floors, C3 Roofs, C4 Internal finishes</td>
<td></td>
</tr>
<tr>
<td>D Examine external works associated with construction projects</td>
<td>D1 Foul and surface water drainage, D2 Utility services, D3 Roads and footpaths, D4 Sustainable urban drainage systems</td>
<td>A report for a given project scenario that covers the design and construction of the external works, including the incorporation of sustainable drainage systems.</td>
</tr>
</tbody>
</table>
Content

Learning aim A: Understand common forms of low-rise construction

A1 Forms of low-rise construction

The application, characteristics, use, methods of load transfer, differences in construction methods, advantages and limitations of the following forms of low-rise construction.

- Framed structures:
 - skeleton, rectangular frame:
 - steel
 - in-situ reinforced concrete
 - prefabricated concrete
 - portal frame:
 - steel
 - laminated timber
 - prefabricated concrete
 - timber frame:
 - prefabricated platform frames
 - open panel systems
 - closed panel systems
 - structural insulated panels (SIPs).

- Traditional construction:
 - cavity wall
 - masonry wall
 - cut rafter roofing
 - timber floors
 - in-situ methods.

- Modular construction:
 - four-sided modules
 - open-sided modules
 - partially open sided
 - corner supported modules
 - stair modules
 - lift modules
 - non-loadbearing modules.

Learning aim B: Examine foundation design and construction

B1 Subsoil investigation

Subsoil investigation methods to obtain data and information for foundation design and their advantages and disadvantages.

- Investigation methods:
 - desk study
 - walkover survey
 - trial pits
 - auger holes
 - percussion drilling and window sampling
 - plate bearing test.

- Information used for foundation design:
 - bearing capacity
 - subsoil classification
 - groundwater levels
 - chemical analysis of soil samples and presence of sulphates
 - presence of obstructions – naturally occurring and from previous development.
B2 Subsoil improvement
Awareness of techniques of how to improve the bearing capacity of the ground before construction work commencing on site:
- vibroflotation, including vibro replacement
- grouting
- land drainage.

B3 Design principles
Foundation design considerations, including the relationship between building load and ground bearing capacity, the foundation footprint and transfer of loads to a suitable bearing strata.
- Factors used during design to minimise settlement:
 - building load
 - soil bearing capacity and type
 - foundation depth
 - groundwater.
- Design to minimise other movement:
 - soil shrinkage
 - ground heave
 - differential settlement
 - effects of tree growth and tree removal.
- The Building Regulations 2010, Part A – use to determine the minimum:
 - width of strip foundations
 - thickness of strip foundations
 - overlap where foundations are stepped.

B4 Types of foundation
The application, characteristics, substructure detailing, advantages and disadvantages and factors affecting choice of the following foundation types for different loadings and ground bearing capacities.
- Strip.
- Trench fill.
- Raft.
- Pad.
- Pile:
 - replacement piles
 - displacement piles
 - pile caps
 - ground beams.

Learning aim C: Examine superstructure design and construction

C1 Walls
Construction methods and techniques, materials used, stability, detailing, external finishes, performance requirements, advantages and disadvantages of the following wall elements.
- External cavity walls:
 - traditional brickwork and blockwork
 - blockwork with external skin rendered.
- Solid wall with rainscreen cladding.
- Internal walls and partitions:
 - blockwork partitions
 - timber stud partitions
 - metal stud partitions
 - demountable partitions.
• Prefabricated timber frame construction:
 o external wall details
 o cladding options, including brickwork
 o internal wall details.
• Openings in walls:
 o head detailing, including methods of supporting the wall above the opening
 o jamb detailing
 o sill and threshold detailing
 o windows
 o doors.

C2 Floors

Construction methods and techniques, materials used, support, detailing, finishes, performance requirements, advantages and disadvantages of the following floor types and elements.

• Ground floors:
 o solid concrete
 o beam and block
 o prestressed concrete
 o suspended timber.
• Intermediate floors:
 o beam and block
 o prestressed concrete
 o timber
 o platform floors in timber frame construction.
• Openings and stairs:
 o forming openings
 o timber stairs
 o precast concrete stairs.

C3 Roofs

Construction methods and techniques, materials and components used, support (including bracing and lateral restraint), detailing (at eaves, verge, abutments and ridge), finishes, performance requirements, advantages and disadvantages of the following roof types.

• Pitched, including mono pitch, double pitch, gable ended and hipped:
 o trussed rafter construction
 o traditional timber roofing.
• Flat:
 o warm deck
 o cold deck
 o method of achieving required falls:
 - firrings
 - laser-cut tapered insulation
 - screed.

C4 Internal finishes

Application, characteristics, properties, advantages and disadvantages of the following finishes.

• Wall finishes:
 o traditional two-coat plasterwork
 o dry lining
 o ceramic tiling
 o wood paneling
 o decorating:
 - paint
 - wallpaper.
• Ceiling finishes:
 o plasterboard and skim
 o suspended ceilings
 o UPVC ceiling cladding
 o timber-boarded ceilings.
• Floor finishes:
 o natural timber
 o laminates
 o carpets
 o ceramic tiling
 o sheet materials.

Learning aim D: Examine external works associated with construction projects

D1 Foul and surface water drainage
The layout, falls, access, advantages and disadvantages of the following methods of disposal for foul and surface water.
 • Combined drainage.
 • Separate drainage.

D2 Utility services
The depth, colour coding of ducts, positioning, typical layout and building entry of the following utility services.
 • Water.
 • Gas.
 • Electricity.
 • Telecommunications.

D3 Roads and footpaths
Construction methods and techniques, materials used, edge details, performance requirements, specifications, finishes, advantages and disadvantages of the following paving types.
 • Tarmacadam to footpaths.
 • Tarmacadam to vehicular areas and roads.
 • Block paving.
 • In-situ concrete.
 • Precast concrete paving.

D4 Sustainable urban drainage systems
The methods, use, characteristics, advantages and disadvantages of sustainable urban drainage systems.
 • Methods of temporary storage of excess surface water:
 o swales
 o infiltration basins
 o extended detention basins
 o wet ponds
 o infiltration systems.
 • Methods allowing natural percolation to groundwater:
 o filter strips
 o porous surfaces:
 • porous block paving
 • permeable tarmacadam
 • porous concrete
 • gravel.
Assessment criteria

<table>
<thead>
<tr>
<th>Pass</th>
<th>Merit</th>
<th>Distinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning aim A: Understand common forms of low-rise construction</td>
<td></td>
<td>A.D1 Evaluate the effectiveness of different structural forms for use with a given low-rise buildings project scenario.</td>
</tr>
<tr>
<td>A.P1 Explain the different structural forms used in the construction of low-rise buildings.</td>
<td>A.M1 Discuss the use of different structural forms for use with a given low-rise buildings project scenario.</td>
<td></td>
</tr>
</tbody>
</table>

Learning aim B: Examine foundation design and construction		BC.D2 Evaluate the construction of new low-rise buildings.
B.P2 Explain the different types of investigation used to provide information required for the design of foundations for low-rise buildings.	B.M2 Discuss the principles of foundation design and how they impact on the choice of foundation type for low-rise buildings.	
B.P3 Explain the different types of foundation used for low-rise buildings.		
B.P4 Describe the principles of foundation design and how they impact on the choice of foundation type for low-rise buildings.		

Learning aim C: Examine superstructure design and construction		
C.P5 Explain the construction details used in the construction of walls, floors and roofs on new construction projects.	C.M3 Analyse the different details and finishes used in the construction of new construction projects.	
C.P6 Summarise the use of internal finishes for floors, walls and ceilings on new construction projects.		

Learning aim D: Examine external works associated with construction projects		D.D3 Analyse the design and construction of external works for new construction projects, including the incorporation of a sustainable urban drainage system.
D.P7 Summarise the design and construction of external works on new construction projects.	D.M4 Discuss the design and construction of external works for new construction projects, including the incorporation of a sustainable urban drainage system.	
D.P8 Explain the use of sustainable urban drainage systems in new construction projects.		
Essential information for assignments

The recommended structure of assessment is shown in the unit summary along with suitable forms of evidence. Section 6 gives information on setting assignments and there is further information on our website.

There is a maximum number of three summative assignments for this unit. The relationship of the learning aims and criteria is:

Learning aim: A (A.P1, A.M1, A.D1)

Learning aims: B and C (B.P2, B.P3, B.P4, C.P5, C.P6, B.M2, C.M3, BC.D2)

Learning aim: D (D.P7, D.P8, D.M4, D.D3)
Further information for teachers and assessors

Resource requirements

There are no specific additional resource requirements for this unit.

Essential information for assessment decisions

Learning aim A

For distinction standard, learners will demonstrate sound knowledge and understanding of the specific advantages and disadvantages of framed structures, traditional construction and modular construction methods when considered for use in the given project scenario. Learners will critically review the different forms of construction in the context of the scenario and will bring together key considerations to form a supported conclusion, drawing on information relevant to the given scenario.

For merit standard, learners will provide a coherent, logical and mostly balanced discussion that considers the application, characteristics, use, methods of load transfer, advantages and limitations of the different structural forms that could be considered for the given project scenario. They will demonstrate some understanding of the specific advantages and limitations of framed structures, traditional construction and modular construction methods when considered for use in the given project scenario.

For pass standard, learners will provide a clear explanation of different structural forms that are used in the construction of low-rise buildings. They will cover a minimum of two structural forms. Learners’ work will demonstrate some knowledge of how the application, characteristics, advantages and limitations of each type of structural form affects the selection. Illustrations and/or sketches with annotations may be used, alongside written submissions, to help convey knowledge and understanding of the different structural forms.

Learning aims B and C

For distinction standard, learners will evaluate the effectiveness of the different foundation types, potential superstructure construction details and finishes to cover the basic proposals and site information for a low-rise construction scenario. Learners will demonstrate sound knowledge and understanding of the specific application, advantages and disadvantages of different foundation types, including strip, trench fill, raft, pad and various types of pile foundation, and the methods and performance requirements for the various elements of superstructure when considered for use in the given project scenario. Learners will review the different methods and details in the context of the scenario and will bring together key considerations to form a supported conclusion, including alternative specifications where appropriate, drawing on information relevant to the given scenario.

For merit standard, learners will provide a coherent, logical and mostly balanced discussion that considers the relationship between building load, ground bearing capacity, the foundation footprint, transfer of loads to a suitable bearing strata and the appropriate foundation types to cover the basic proposals and site information for a low-rise construction scenario. They will demonstrate a sound approach and competent analysis of typical details and finishes used in the construction of walls, floors and roofs. Learners must cover two details for each of the identified elements.

For pass standard, learners will provide a clear explanation of methods for determining soil type and properties, foundation types and principles of foundation design used in the construction of low-rise domestic buildings. Their explanation will cover a minimum of three different site investigation methods and foundation types, although the explanation will be generic and may only have limited focus to cover the basic proposals and site information for a low-rise construction scenario. Learners’ work will cover an explanation of superstructure construction details, including walls, floors and roofs but this will be generic and not focused on the scenario. Details of internal finishes will be outlined, covering walls, ceilings and floors. Illustrations and/or sketches with annotations may be used, alongside written submissions, to help convey knowledge and understanding of the different principles and details.
Learning aim D

For distinction standard, learners will evaluate the effectiveness of external works, including sustainable urban drainage systems, to cover the basic proposals and site information for a low-rise construction scenario. Learners will demonstrate sound knowledge and understanding of the specific application, advantages and disadvantages of external works and sustainable urban drainage systems, when considered for use in the given project scenario. Learners will review the different methods and details in the context of the scenario and will bring together key considerations to form a supported conclusion, including alternative specifications where appropriate, drawing on information relevant to the given scenario.

For merit standard, learners will provide a coherent, logical and mostly balanced discussion in their work that covers how the design and construction of external works is suitable for the new construction project, including how external works are affected by the incorporation of a sustainable urban drainage system. This should include consideration of methods that delay and/or minimise the discharge of excess surface water, methods that provide for localised infiltration to groundwater and how all three approaches can be combined into a single effective system.

For pass standard, learners will demonstrate knowledge and understanding in their work of external works that incorporate sustainable drainage systems, including methods of temporary storage and methods allowing percolation to groundwater. Learners will demonstrate an awareness of the various external works requirements to cover the basic proposals and site information for a low-rise scenario. Illustrations and/or sketches with annotations may be used, alongside written submissions, to help convey knowledge and understanding of the different principles and details.

Links to other units

This unit links to:
- Unit 1: Construction Principles
- Unit 2: Construction Design
- Unit 5: Health and Safety in Construction.

Employer involvement

This unit would benefit from employer involvement in the form of:
- guest speakers
- participation in audience assessment of presentations
- design/ideas to contribute to unit assignment/case study/project materials
- work experience
- employer’s business materials as exemplars
- support from local business staff as mentors.
Unit 5: Health and Safety in Construction

Level: 3
Unit type: Internal
Guided learning hours: 60

Unit in brief

Learners will carry out a safe system of work and investigate the significance of safety system reviews, understanding the responsibilities of employees and employers with regard to health and safety in construction operations.

Unit introduction

Health and safety in construction operations is essential so that workers can carry out practical activities in a safe environment that is free from hazards and risks. Safety starts in the office, with planning safe systems of work, assessing the risks in construction operations and applying control measures to reduce the risks to an acceptable level. Companies aspire to achieve the target of zero accidents in the workplace, promoting their reputation as safe constructors.

In this unit, you will examine the responsibilities of employees and employers with regard to UK legislation and regulations and the procedures used to control hazards and risks for construction operations across a range of activities. You will use relevant policies and procedures to design a safe system of work that could be instigated and maintained in a construction context. You will also investigate how all aspects of health and safety are monitored to ensure they are kept up to date, employers and employees are well informed and any changes are evaluated and controlled.

This unit can help you progress to health and safety management and supervision in the construction sector as a contracts manager or site manager, or to specialist health and safety qualifications such as the National Examination Board in Occupational Safety and Health (NEBOSH) Certificate and Diploma qualifications or Higher Nationals in Construction and degrees in construction specialisms.

Learning aims

In this unit you will:

A Understand how health and safety legislation is applied to construction operations
B Carry out the development of a safe system of work for construction operations
C Understand the need for the review of safety systems for construction operations.
Summary of unit

<table>
<thead>
<tr>
<th>Learning aim</th>
<th>Key content areas</th>
<th>Recommended assessment approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Understand how health and safety legislation is applied to construction operations | A1 Health and Safety at Work etc. Act 1974
A2 Construction (Design and Management) Regulations 2015
A3 Management of Health and Safety at Work Regulations 1999
A4 Work at Height Regulations 2005
A5 Control of Substances Hazardous to Health (COSHH) Regulations 2002
A6 Training and education | Presentations, explanatory leaflets or a formal report that references case studies, showing the impact of how legislation and regulations uphold and improve health and safety on construction sites. Reference to statistics could provide justification of legislation and regulation effectiveness. |
| **B** | | |
| Carry out the development of a safe system of work for construction operations | B1 Health and safety preparation
B2 Construction phase health and safety
B3 Health and safety file | A safety survey with completed documentation, including the production of a risk assessment and method statement. |
| **C** | | |
| Understand the need for the review of safety systems for construction operations | C1 Accident reporting procedures
C2 Reviewing safety systems
C3 Changes to systems and procedures
C4 Skills, knowledge and behaviours | A report evaluating how safe systems can be improved following the reporting of accidents, utilising review procedures. |
Content

Learning aim A: Understand how health and safety legislation is applied to construction operations

Current legislation and regulations, including any updates, and their application in construction operations.

A1 Health and Safety at Work etc. Act 1974

- The duties defined in each section of the act. The duties of:
 - employers
 - employees and self-employed
 - designers and manufacturers
 - Health and Safety Executive (HSE):
 - powers of the HSE when visiting a site or investigating an accident
 - notices for improvements and prohibition, differences between the two types.
- Penalties for non-compliance:
 - enforcement, sanctions, loss of reputation, loss of work, corporate manslaughter
 - fines, magistrates and crown court penalties, level of fines
 - imprisonment, length of detainment.

A2 Construction (Design and Management) Regulations 2015

The content of the regulations and what aspects have to be carried out in order to comply with them during the design and construction of a building project.

- Phases to be followed:
 - pre-construction information – client’s health and safety file, site survey, desktop research
 - construction phase safety plan – contents required for compliance with regulations
 - content of the health and safety file:
 - meet the requirements of the regulations
 - duty holders’ participation, to include designer, client, main contractor, contractors.
- Duties of parties to the contract, to include:
 - principal designer and designers
 - client
 - principal contractor.
- General requirements for all construction sites:
 - welfare facilities – Schedule 2 in the appendix to the regulations
 - general principles of prevention to be employed on site.

A3 Management of Health and Safety at Work Regulations 1999

Aspects of the regulations relevant to construction.

- Duties, to include those defined in the following sections of the regulations:
 - risk assessment requirements under Regulation 3 of the legislation
 - health and safety arrangements and assistance provided by the employer
 - cooperation and co-ordination between all parties
 - capabilities and training of all operatives
 - specific duties of employees under this regulation.
A4 Work at Height Regulations 2005
Duties, to include:
- organisation and planning required before working at height is commenced
- avoiding risks from working at height by establishing an alternative method
- work equipment requirements for operatives
- duties of persons at work with regard to safety under this regulation
- requirements for any working platform used to gain access to working at height
- requirements for personal fall protection to be provided for employees
- the use of ladders and the regulations and duties concerning this use.

A5 Control of Substances Hazardous to Health (COSHH) Regulations 2002
Relevant aspects regarding the use of substances and chemicals during construction activities on site.
- Employer’s duties, to include provision of:
 o risk assessment of all substances used in the workplace – highlighting precautionary methods to be employed before and during use
 o control measures, use, maintenance, examination and testing – reducing the risk to an acceptable level
 o monitoring and health surveillance of employees using substances at work
 o information, instruction and training of employees.

A6 Training and education
- On-site safety training, e.g. tool box talks.
- Construction Skills Certification Scheme (CSCS) card – classification and the different types of cards available, qualifying for a card, process, validity.
- Fire safety.
- Off-site training requirements and links to control measures, e.g. for working at height, COSHH, noise, confined spaces.
- Training associated with equipment.
- Provision and Use of Work Equipment Regulations (PUWER) 1998.
- Purpose and provision of safety notice boards and signage.

Learning aim B: Carry out the development of a safe system of work for construction operations
Relevant administration and management tasks must be carried out to ensure that a construction site is a safe place of work.

B1 Health and safety preparation
- Notifications to HSE, the completion of the F10 documentation.
- Health and safety construction phase plan, contents and safe systems of work (SSW).
- Site induction content to be prepared, inclusions, method of delivery.
- Preparation of the site waste management plan, its content and specific requirements under the regulations for waste management.
- Safety poster provision, gate and entrance signage and notices, formal gate notifications.

B2 Construction phase health and safety
- Delivery of site inductions and retaining records of inductions.
- Identifying hazards by various methods – direct observation, checklists, audits, tool box talks, safety committees.
- Writing risk assessments and evaluating control measures – risk ratings, acceptable levels.
- Writing method statements, sequencing of statements, resources to be used.
- Delivering tool box talks – method, timing, what to cover in talk, who should be present.
• Issuing care and maintenance of personal protective equipment (PPE) and first-aid facilities.
• Preparing temporary fire and evacuation procedures.
• Instructing on waste disposal, segregation, good housekeeping.
• Managing subcontractors’ safety information, site meetings.

B3 Health and safety file

• Preparing file contents in accordance with the requirements of the Construction (Design and Management) Regulations 2015:
 o a brief description of the work carried out
 o any residual hazards that remain and how they have been dealt with, e.g. information concerning asbestos, contaminated land, buried services, etc.
 o key structural information, e.g. bracing, sources of substantial stored energy – including pre- or post-tensioned members, etc.
 o safe working loads for floors and roofs, particularly where these may prohibit placing scaffolding or heavy machinery
 o hazardous materials used, to include manufacturer’s data sheets, e.g. pesticides, special coatings that should not be burnt off, etc.
 o information regarding the removal or dismantling of installed plant and equipment, e.g. any special arrangements for lifting, special instructions for dismantling, etc.
 o health and safety information about equipment provided for cleaning or maintaining the structure
 o the nature, location and markings of significant services, including underground cables; gas supply equipment; fire-fighting services, etc.
 o information and as-built drawings of the structure, its plant and equipment, e.g. the means of safe access to and from service voids, fire doors and compartmentalization, etc.

• Reviewing documentation.
• File distribution.

Learning aim C: Understand the need for the review of safety systems for construction operations

Reviewing to close the safety cycle and analysing systems for any changes to processes, procedures or operations.

C1 Accident reporting procedures

• Definition of the following in accordance with reporting procedures and classification:
 o accident
 o near miss
 o minor
 o major.

• Procedures on discovering an accident:
 o first-aid actions, call for help, first aider, emergency services, individual responsibilities
 o reporting to supervisor, procedures, accident book, internal reports
 o Reporting of Injuries, Diseases and Dangerous Occurrences Regulations (RIDDOR) 2013, over-three-day lost time injuries, reporting of a fatality
 o internal accident investigation procedures
 o fatalities and HSE investigations, documentation to produce.
C2 Reviewing safety systems
Using data to establish where unplanned events occur and to reduce incidents.

- Analysis of accident information:
 - trends in near misses and types of accidents
 - comparison with UK national averages
 - discussion with workforce, site safety meetings, interviews, safety committees
 - suggestions and recommendations for improvements, justified by statistical analysis.

- Benefits of undertaking safety reviews:
 - reduction in costs – direct and indirect
 - reputation of the company, marketing materials
 - worker morale, a better and safer place to work
 - improved performance in terms of production
 - client estimating pre-contract enquiries and getting onto employer tender lists.

C3 Changes to systems and procedures
Closing the safety cycle to ensure that any changes are reviewed, checked for compliance and monitored for effectiveness.

- Reviewing control measures, ensuring lowest possible risk achieved with reasonably practical measures, signing and dating reviews.
- Revising risk assessments in light of changes to processes, operatives and materials.
- Evaluating revised risk ratings.
- Reviewing changes and recommendations, communication to all.

C4 Skills, knowledge and behaviours
Demonstrating appropriate behaviour and its impact on outcomes, to include professionalism, etiquette, working to deadlines, accountability and individual responsibility.

- Evaluating outcomes on hazards and risks to help inform high-quality justified recommendations and decisions.
- Media and communication skills, including:
 - the ability to convey intended meaning, e.g. written (risk assessment documentation, recording documentation, reports, visual aids for presentation use), verbal communication requirements (one-to-one and group, informal and formal situations)
 - use of tone and language for verbal and written communications to convey intended meaning and make a positive and constructive impact on audience, e.g. positive and engaging tone, technical/vocational language suitable for intended audience.
Assessment criteria

<table>
<thead>
<tr>
<th>Pass</th>
<th>Merit</th>
<th>Distinction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning aim A: Understand how health and safety legislation is applied to construction operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.P1</td>
<td>Explain the legislative duties of employers and employees in the current legislation.</td>
<td>A.M1</td>
</tr>
<tr>
<td>A.P2</td>
<td>Explain how the application of health and safety related legislation controls health and safety in construction.</td>
<td></td>
</tr>
<tr>
<td>A.P3</td>
<td>Explain how education and training improves standards of health and safety.</td>
<td></td>
</tr>
<tr>
<td>Learning aim B: Carry out the development of a safe system of work for construction operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.P4</td>
<td>Explain methods used to identify hazards and assess risks.</td>
<td>B.M2</td>
</tr>
<tr>
<td>B.P5</td>
<td>Produce a safe system of work for a given construction operation, and a risk assessment to include a method statement with effective control measures.</td>
<td></td>
</tr>
<tr>
<td>Learning aim C: Understand the need for the review of safety systems for construction operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.P6</td>
<td>Explain how safe systems of work are reviewed.</td>
<td>C.M3</td>
</tr>
<tr>
<td>C.P7</td>
<td>Explain the procedures that follow an accident to improve future safety.</td>
<td></td>
</tr>
</tbody>
</table>
Essential information for assignments

The recommended structure of assessment is shown in the unit summary along with suitable forms of evidence. Section 6 gives information on setting assignments and there is further information on our website.

There is a maximum number of three summative assignments for this unit. The relationship of the learning aims and criteria is:

Learning aim: A (A.P1, A.P2, A.P3, A.M1, A.D1)
Learning aim: B (B.P4, B.P5, B.M2, B.D2)
Learning aim C (C.P6, C.P7, C.M3, C.D3)
Further information for teachers and assessors

Resource requirements

There are no specific additional resource requirements for this unit.

Essential information for assessment decisions

Learning aim A

For distinction standard, learners must thoroughly evaluate, in terms of advantages and disadvantages, the effectiveness of health and safety legislation and regulations in controlling risks on a construction site. Learners will make specific, relevant references to the role of safety education and training to produce a logical, coherent response. Learners’ research must lead to a supported, convincing judgement of the impact of risk reduction, considering fatalities and major and minor accidents in order to come to a robust conclusion. Learners’ research can also include the contribution of legislation and regulations in reducing ‘near misses’. This can include making reasoned judgements where legislation and regulations have not reduced accident rates or incidents on construction sites.

For merit standard, learners must produce a clear, balanced discussion of the impact of how legislation and regulations, and associated training and education, control safety on a construction site. This should be in terms of what has to be provided legally, for example safety information and welfare facilities and how these are provided, depending on the choice of two other regulations in addition to the Health and Safety at Work etc. Act 1974. Learners will consider the impact in terms of relevant preliminary items and temporary features provided on site, for example mobile elevated platforms for gaining access at height, the training of operatives to use harnesses to restrain falls from height, etc.

For pass standard, learners need to explain the Health and Safety at Work etc. Act 1974 in terms of the duties placed on an employer and employee under this legislation. Learners will give mostly relevant examples of the types of provision, giving accurate details and reasons for their importance in a construction working environment. Two other regulations must be explored by learners in explaining how each controls health and safety in a construction context. Examples of on-site requirements must be provided against each regulation. Learners will also provide a realistic explanation of how education and training improves standards of health and safety.

Learning aim B

For distinction standard, learners must thoroughly evaluate how hazard identification, risk assessment and method statements support a safe system of work for a given construction operation. They must consider the strengths and potential weaknesses of the safe system of work while examining risk assessments, method statements and control measures. This will result in a reasoned conclusion with justifications supporting the effectiveness of the optimised safe system of work. Learners must demonstrate that they have developed a robust, comprehensive understanding of the methods used to ensure that construction operations can be carried out in a safe manner with minimal risk of accident, injury or near miss.

For merit standard, learners must produce an optimised safe system of work. In doing so, they must analyse how hazard identification, risk assessment and method statements support a safe system of work for a given construction operation. They must conduct a methodical and detailed examination that considers the various facets of the safe system of work, while examining risk assessments, method statements and control measures and how these can be improved. Learners must demonstrate that they fully comprehend the methods used to ensure that construction operations can be carried out in a safe manner with minimal risk of accident, injury or near miss.
For pass standard, learners must produce a realistic, appropriate explanation of the methods used to identify hazards and assess risks. Learners will produce a realistic risk assessment and method statement with effective control measures that supports a safe system of work for a given construction operation. Learners must demonstrate that they have a good understanding of the methods used to ensure that construction operations can be carried out in a safe manner with minimal risk of accident, injury or near miss.

Learning aim C

For distinction standard, learners must consider an accident report and then thoroughly evaluate how safe systems of work can be improved, utilising review procedures following the reporting of accidents. They must consider both the strengths and potential weaknesses of the safe systems of work in relation to the scenario, and arrive at a logical conclusion with accurate justifications supporting the effectiveness of the safe system of work that they are proposing. Learners must demonstrate that they have developed a robust, in-depth understanding of the methods used to review safe systems of work following the reporting of an accident.

For merit standard, learners will adopt a balanced approach in considering an accident report and discussing how safe systems of work can be improved, utilising review procedures following the reporting of accidents. Learners will provide a relevant, balanced discussion of how different aspects of safe systems of work interrelate, in relation to the scenario. Learners must demonstrate that they fully comprehend the methods used to review safe systems of work following the reporting of an accident.

For pass standard, learners must explain how safe systems of work are reviewed, and the procedures that follow an accident to facilitate safety improvements in the future. Learners’ explanations will be realistic and mostly relevant. Learners must demonstrate that they have a good understanding of the methods used to review safe systems of work following the reporting of an accident.

Links to other units

This unit links to:
- Unit 4: Construction Technology.

Employer involvement

This unit would benefit from employer involvement in the form of:
- technical workshops involving staff from local construction organisations with expertise in a range of specialist areas
- contribution of ideas to unit assignments, for individual learner projects and contribution of project materials
- guest speakers from a related health and safety background
- participation in audience assessment of presentations for discussion elements
- work experience on a construction site
- employer's business materials as exemplars
- support from local business staff as mentors
- employer's health and safety policies and procedural documentation.
4 Planning your programme

How do I choose the right BTEC National qualification for my learners?

BTEC Nationals come in a range of sizes, each with a specific purpose. You will need to assess learners very carefully to ensure that they start on the right size of qualification to fit into their 16–19 study programme, and that they take the right pathways or optional units that allow them to progress to the next stage.

If a learner is clear that they want to progress to the workplace they should be directed towards an occupationally-specific qualification, such as a BTEC National Diploma, from the outset. Some learners may want to take a number of complementary qualifications or keep their progression options open. These learners may be suited to taking a BTEC National Certificate or Extended Certificate. Learners who then decide to continue with a fuller vocational programme can transfer to a BTEC National Diploma or Extended Diploma, for example for their second year.

Some learners are sure of the sector they want to work in and are aiming for progression into that sector via higher education. These learners should be directed to the two-year BTEC National Extended Diploma as the most suitable qualification.

As a centre, you may want to teach learners who are taking different qualifications together. You may also wish to transfer learners between programmes to meet changes in their progression needs. You should check the qualification structures and unit combinations carefully as there is no exact match among the different sizes. You may find that learners need to complete more than the minimum number of units when transferring.

When learners are recruited, you need to give them accurate information on the title and focus of the qualification for which they are studying.

Is there a learner entry requirement?

As a centre it is your responsibility to ensure that learners who are recruited have a reasonable expectation of success on the programme. There are no formal entry requirements but we expect learners to have qualifications at or equivalent to Level 2.

Learners are most likely to succeed if they have:

- five GCSEs at good grades and/or
- BTEC qualification(s) at Level 2
- achievement in English and mathematics through GCSE or Functional Skills.

Learners may demonstrate ability to succeed in various ways. For example, learners may have relevant work experience or specific aptitude shown through diagnostic tests or non-educational experience.

What is involved in becoming an approved centre?

All centres must be approved before they can offer these qualifications – so that they are ready to assess learners and so that we can provide the support that is needed. Further information is given in Section 8.

What level of sector knowledge is needed to teach these qualifications?

We do not set any requirements for teachers but expect that centres will assess their overall skills and knowledge of the teaching team to ensure that they are relevant and up to date. This will give learners a rich programme to prepare them for employment in the sector. As part of the requirements of the programme are to involve employers in delivery this should support centres in ensuring that they are following up to date practices when delivering the programme.

What resources are required to deliver these qualifications?

As part of your centre approval you will need to show that the necessary material resources and work spaces are available to deliver BTEC Nationals. For some units, specific resources are required. This is indicated in the units.
How can myBTEC help with planning for these qualifications?

myBTEC is an online toolkit that supports the delivery, assessment and quality assurance of BTECs in centres. It supports teachers with activities, such as choosing a valid combination of units, creating assignment briefs and creating assessment plans. For further information see Section 10.

Which modes of delivery can be used for these qualifications?

You are free to deliver BTEC Nationals using any form of delivery that meets the needs of your learners. We recommend making use of a wide variety of modes, including direct instruction in classrooms or work environments, investigative and practical work, group and peer work, private study and e-learning.

What are the requirements for meaningful employer involvement?

Requirements

This BTEC Level 3 National Extended Certificate in Construction and the Built Environment has been designed as a Tech Level qualification. As an approved centre you are required to ensure that during their study, every learner has access to meaningful activity involving employers. Involvement should be with employers from the construction and the built environment sector and should form a significant part of the delivery or assessment of the qualification. Each centre’s approach to employer involvement will be monitored in two ways. It will be monitored at centre level in the first term each year as part of the annual quality management review process that addresses centre strategy for delivery, assessment and quality assurance, when we will ask you to show evidence of how employer involvement is provided for all learners. You will need to show evidence in order to gain reporting clearance for certification. It will be monitored also at programme level as part of the standards verification process to confirm that plans for employer involvement meet the requirements of the specification. These approaches are designed to ensure additional activities can be scheduled where necessary so learners are not disadvantaged (see Section 8: Quality assurance).

We know that the vast majority of programmes already have established links with employers. In order to give you maximum flexibility in creating and strengthening employer involvement, we have not specified a particular level of input from employers. However, meaningful employer involvement, as defined below, should contribute significantly to at least one mandatory unit. The mandatory unit that specifies where delivery and/or assessment will be linked to employers is Unit 4: Construction Technology.

There are suggestions in many of the units about how employers could become involved in delivery and/or assessment. These suggestions are not exhaustive and there will be other possibilities at local level.

Employer involvement in these units is subject to verification as part of the standards verification process (see Section 8).

Definition

Activities that are eligible to be counted as meaningful engagement are:

- structured work experience or work placements that develop skills and knowledge relevant to the qualification
- projects or assessments set with input from industry practitioners
- masterclasses or guest lectures from industry practitioners
- ‘expert witness’ reports from practitioners that contribute to the assessment of a learner’s work.

There may be other ways in which learners can benefit from contact with employers or prepare for employment, such as listening to careers talks or working in simulated environments. While they provide benefits to learners they do not count as meaningful engagement.
Support

It is important that you give learners opportunities that are high quality and directly relevant to their study. We will support you in this through guidance materials and by giving you examples of best practice.

What support is available?

We provide a wealth of support materials, including curriculum plans, delivery guides, authorised assignment briefs, additional papers for external assessments and examples of marked learner work.

You will be allocated a Standards Verifier early on in the planning stage to support you with planning your assessments. There will be extensive training programmes as well as support from our Subject Advisor team.

For further details see Section 10.

How will my learners become more employable through these qualifications?

All BTEC Nationals are mapped to relevant occupational standards (see Appendix 1).

In the mandatory content and the selected optional units that focus on technical preparation learners will be acquiring the key knowledge and skills that employers need. Also, employability skills such as teamwork and entrepreneurialism, and completing realistic tasks, have been built into the design of the learning aims and content. This gives you the opportunity to use relevant contexts, scenarios and materials to enable learners to develop a portfolio of evidence that demonstrates the breadth of their skills and knowledge in a way that equips them for employment.
5 Assessment structure and external assessment

Introduction

BTEC Nationals are assessed using a combination of internal assessments, which are set and marked by teachers, and external assessments which are set and marked by Pearson:

• mandatory units have a combination of internal and external assessments
• all optional units are internally assessed.

We have taken great care to ensure that the assessment method chosen is appropriate to the content of the unit and in line with requirements from employers and higher education.

In developing an overall plan for delivery and assessment for the programme, you will need to consider the order in which you deliver units, whether delivery is over short or long periods and when assessment can take place. Some units are defined as synoptic units (see Section 2).

Normally, a synoptic assessment is one that a learner would take later in a programme and in which they will be expected to apply learning from a range of units. Synoptic units may be internally or externally assessed. Where a unit is externally assessed you should refer to the sample assessment materials (SAMs) to identify where there is an expectation that learners draw on their wider learning. For internally-assessed units, you must plan the assignments so that learners can demonstrate learning from across their programme. A unit may be synoptic in one qualification and not another because of the relationship it has to the rest of the qualification.

We have addressed the need to ensure that the time allocated to final assessment of internal and external units is reasonable so that there is sufficient time for teaching and learning, formative assessment and development of transferable skills.

In administering internal and external assessment, the centre needs to be aware of the specific procedures and policies that apply, for example to registration, entries and results. An overview with signposting to relevant documents is given in Section 7.

Internal assessment

Our approach to internal assessment for these qualifications will be broadly familiar to experienced centres. It offers flexibility in how and when you assess learners, provided that you meet assessment and quality assurance requirements. You will need to take account of the requirements of the unit format, which we explain in Section 3, and the requirements for delivering assessment given in Section 6.

External assessment

A summary of the external assessment for this qualification is given in Section 2. You should check this information carefully, together with the unit specification and the sample assessment materials, so that you can timetable learning and assessment periods appropriately.

Learners must be prepared for external assessment by the time they undertake it. In preparing learners for assessment you will want to take account of required learning time, the relationship with other external assessments and opportunities for retaking. You should ensure that learners are not entered for unreasonable amounts of external assessment in one session. Learners may resit an external assessment to obtain a higher grade of near pass or above. If a learner has more than one attempt, then the best result will be used for qualification grading, up to the permitted maximum. It is unlikely that learners will need to or benefit from taking all assessments twice so you are advised to plan appropriately. Some assessments are synoptic and learners are likely to perform best if these assessments are taken towards the end of the programme.
Key features of external assessment in construction and the built environment

In construction and the built environment, after consultation with stakeholders, we have developed the following.

• **Unit 1: Construction Principles** – learners complete a written examination, demonstrating the skills needed to solve a variety of practical construction problems by applying science knowledge and carrying out mathematical and statistical techniques. Learners will apply mathematical principles and techniques to carry out calculations that determine how materials behave under the action of forces or loads when used as structural members, and draw conclusions regarding whether a material is fit for purpose.

• **Unit 2: Construction Design** – learners will complete an externally-marked task, demonstrating their understanding of the principles and practice involved in the design and construction of low- and medium-rise buildings and structures, and showing an understanding of how design is influenced by client requirements and external constraints.

Units

The externally-assessed units have a specific format which we explain in *Section 3*. The content of units will be sampled across external assessments over time through appropriate papers and tasks. The ways in which learners are assessed are shown through the assessment outcomes and grading descriptors. External assessments are marked and awarded using the grade descriptors. The grades available are Distinction (D), Merit (M), Pass (P) and Near Pass (N). The Near Pass (N) grade gives learners credit below a Pass, where they have demonstrated evidence of positive performance which is worth more than an unclassified result but not yet at the Pass standard.

Sample assessment materials

Each externally-assessed unit has a set of sample assessment materials (SAMs) that accompanies this specification. The SAMs are there to give you an example of what the external assessment will look like in terms of the feel and level of demand of the assessment. In the case of units containing synoptic assessment, the SAMs will also show where learners are expected to select and apply from across the programme.

The SAMs show the range of possible question types that may appear in the actual assessments and give you a good indication of how the assessments will be structured. While SAMs can be used for practice with learners, as with any assessment the content covered and specific details of the questions asked will change in each assessment.

A copy of each of these assessments can be downloaded from our website. An additional sample of each of the Pearson-set units will be available before the first sitting of the assessment to allow your learners further opportunities for practice.
6 Internal assessment

This section gives an overview of the key features of internal assessment and how you, as an approved centre, can offer it effectively. The full requirements and operational information are given in the Pearson Quality Assurance Handbook. All members of the assessment team need to refer to this document.

For BTEC Nationals it is important that you can meet the expectations of stakeholders and the needs of learners by providing a programme that is practical and applied. Centres can tailor programmes to meet local needs and use links with local employers and the wider vocational sector.

When internal assessment is operated effectively it is challenging, engaging, practical and up to date. It must also be fair to all learners and meet national standards.

Principles of internal assessment

Assessment through assignments

For internally-assessed units, the format of assessment is an assignment taken after the content of the unit, or part of the unit if several assignments are used, has been delivered. An assignment may take a variety of forms, including practical and written types. An assignment is a distinct activity completed independently by learners that is separate from teaching, practice, exploration and other activities that learners complete with direction from, and formative assessment by, teachers.

An assignment is issued to learners as an assignment brief with a defined start date, a completion date and clear requirements for the evidence that they need to provide. There may be specific observed practical components during the assignment period. Assignments can be divided into tasks and may require several forms of evidence. A valid assignment will enable a clear and formal assessment outcome based on the assessment criteria.

Assessment decisions through applying unit-based criteria

Assessment decisions for BTEC Nationals are based on the specific criteria given in each unit and set at each grade level. To ensure that standards are consistent in the qualification and across the suite as a whole, the criteria for each unit have been defined according to a framework. The way in which individual units are written provides a balance of assessment of understanding, practical skills and vocational attributes appropriate to the purpose of qualifications.

The assessment criteria for a unit are hierarchical and holistic. For example, if an M criterion requires the learner to show ‘analysis’ and the related P criterion requires the learner to ‘explain’, then to satisfy the M criterion a learner will need to cover both ‘explain’ and ‘analyse’. The unit assessment grid shows the relationships among the criteria so that assessors can apply all the criteria to the learner’s evidence at the same time. In Appendix 2 we have set out a definition of terms that assessors need to understand.

Assessors must show how they have reached their decisions using the criteria in the assessment records. When a learner has completed all the assessment for a unit then the assessment team will give a grade for the unit. This is given simply according to the highest level for which the learner is judged to have met all the criteria. Therefore:

- to achieve a Distinction, a learner must have satisfied all the Distinction criteria (and therefore the Pass and Merit criteria); these define outstanding performance across the unit as a whole
- to achieve a Merit, a learner must have satisfied all the Merit criteria (and therefore the Pass criteria) through high performance in each learning aim
- to achieve a Pass, a learner must have satisfied all the Pass criteria for the learning aims, showing coverage of the unit content and therefore attainment at Level 3 of the national framework.
The award of a Pass is a defined level of performance and cannot be given solely on the basis of a learner completing assignments. Learners who do not satisfy the Pass criteria should be reported as Unclassified.

The assessment team
It is important that there is an effective team for internal assessment. There are three key roles involved in implementing assessment processes in your centre, each with different interrelated responsibilities, the roles are listed below. Full information is given in the Pearson Quality Assurance Handbook.

- The Lead Internal Verifier (the Lead IV) has overall responsibility for the programme, its assessment and internal verification to meet our requirements, record keeping and liaison with the Standards Verifier. The Lead IV registers with Pearson annually. The Lead IV acts as an assessor, supports the rest of the assessment team, makes sure that they have the information they need about our assessment requirements and organises training, making use of our guidance and support materials.
- Internal Verifiers (IVs) oversee all assessment activity in consultation with the Lead IV. They check that assignments and assessment decisions are valid and that they meet our requirements. IVs will be standardised by working with the Lead IV. Normally, IVs are also assessors but they do not verify their own assessments.
- Assessors set or use assignments to assess learners to national standards. Before taking any assessment decisions, assessors participate in standardisation activities led by the Lead IV. They work with the Lead IV and IVs to ensure that the assessment is planned and carried out in line with our requirements.

Effective organisation
Internal assessment needs to be well organised so that the progress of learners can be tracked and so that we can monitor that assessment is being carried out in line with national standards. We support you through, for example, providing training materials and sample documentation. Our online myBTEC service can help support you in planning and record keeping. Further information on using myBTEC can be found in Section 10 and on our website.

It is particularly important that you manage the overall assignment programme and deadlines to make sure that learners are able to complete assignments on time.

Learner preparation
To ensure that you provide effective assessment for your learners, you need to make sure that they understand their responsibilities for assessment and the centre’s arrangements.

From induction onwards, you will want to ensure that learners are motivated to work consistently and independently to achieve the requirements of the qualifications. Learners need to understand how assignments are used, the importance of meeting assignment deadlines, and that all the work submitted for assessment must be their own.

You will need to give learners a guide that explains how assignments are used for assessment, how assignments relate to the teaching programme, and how learners should use and reference source materials, including what would constitute plagiarism. The guide should also set out your approach to operating assessment, such as how learners must submit work and request extensions.
Setting effective assignments

Setting the number and structure of assignments

In setting your assignments, you need to work with the structure of assignments shown in the Essential information for assignments section of a unit. This shows the structure of the learning aims and criteria that you must follow and the recommended number of assignments that you should use. For some units we provide authorised assignment briefs, for all the units we give you suggestions on how to create suitable assignments. You can find these materials along with this specification on our website. In designing your own assignment briefs you should bear in mind the following points.

- The number of assignments for a unit must not exceed the number shown in Essential information for assignments. However, you may choose to combine assignments, for example to create a single assignment for the whole unit.
- You may also choose to combine all or parts of different units into single assignments, provided that all units and all their associated learning aims are fully addressed in the programme overall. If you choose to take this approach, you need to make sure that learners are fully prepared so that they can provide all the required evidence for assessment and that you are able to track achievement in the records.
- A learning aim must always be assessed as a whole and must not be split into two or more tasks.
- The assignment must be targeted to the learning aims but the learning aims and their associated criteria are not tasks in themselves. Criteria are expressed in terms of the outcome shown in the evidence.
- You do not have to follow the order of the learning aims of a unit in setting assignments but later learning aims often require learners to apply the content of earlier learning aims and they may require learners to draw their learning together.
- Assignments must be structured to allow learners to demonstrate the full range of achievement at all grade levels. Learners need to be treated fairly by being given the opportunity to achieve a higher grade if they have the ability.
- As assignments provide a final assessment, they will draw on the specified range of teaching content for the learning aims. The specified content is compulsory. The evidence for assessment need not cover every aspect of the teaching content as learners will normally be given particular examples, case studies or contexts in their assignments. For example, if a learner is carrying out one practical performance, or an investigation of one organisation, then they will address all the relevant range of content that applies in that instance.

Providing an assignment brief

A good assignment brief is one that, through providing challenging and realistic tasks, motivates learners to provide appropriate evidence of what they have learned.

An assignment brief should have:

- a vocational scenario, this could be a simple situation or a full, detailed set of vocational requirements that motivates the learner to apply their learning through the assignment
- clear instructions to the learner about what they are required to do, normally set out through a series of tasks
- an audience or purpose for which the evidence is being provided
- an explanation of how the assignment relates to the unit(s) being assessed.
Forms of evidence

BTEC Nationals have always allowed for a variety of forms of evidence to be used, provided that they are suited to the type of learning aim being assessed. For many units, the practical demonstration of skills is necessary and for others, learners will need to carry out their own research and analysis. The units give you information on what would be suitable forms of evidence to provide learners with the opportunity to apply a range of employability or transferable skills. Centres may choose to use different suitable forms for evidence to those proposed. Overall, learners should be assessed using varied forms of evidence.

Full definitions of types of assessment are given in Appendix 2. These are some of the main types of assessment:

- written reports
- projects
- time-constrained practical assessments with observation records and supporting evidence
- recordings of performance
- sketchbooks, working logbooks, reflective journals
- presentations with assessor questioning.

The form(s) of evidence selected must:

- allow the learner to provide all the evidence required for the learning aim(s) and the associated assessment criteria at all grade levels
- allow the learner to produce evidence that is their own independent work
- allow a verifier to independently reassess the learner to check the assessor’s decisions.

For example, when you are using performance evidence, you need to think about how supporting evidence can be captured through recordings, photographs or task sheets.

Centres need to take particular care that learners are enabled to produce independent work. For example, if learners are asked to use real examples, then best practice would be to encourage them to use their own or to give the group a number of examples that can be used in varied combinations.
Making valid assessment decisions

Authenticity of learner work
Once an assessment has begun, learners must not be given feedback on progress towards fulfilling the targeted criteria.

An assessor must assess only learner work that is authentic, i.e. learners’ own independent work. Learners must authenticate the evidence that they provide for assessment through signing a declaration stating that it is their own work.

Assessors must ensure that evidence is authentic to a learner through setting valid assignments and supervising them during the assessment period. Assessors must take care not to provide direct input, instructions or specific feedback that may compromise authenticity.

Assessors must complete a declaration that:
- the evidence submitted for this assignment is the learner’s own
- the learner has clearly referenced any sources used in the work
- they understand that false declaration is a form of malpractice.

Centres can use Pearson templates or their own templates to document authentication.

During assessment, an assessor may suspect that some or all of the evidence from a learner is not authentic. The assessor must then take appropriate action using the centre’s policies for malpractice. Further information is given in Section 7.

Making assessment decisions using criteria
Assessors make judgements using the criteria. The evidence from a learner can be judged using all the relevant criteria at the same time. The assessor needs to make a judgement against each criterion that evidence is present and sufficiently comprehensive. For example, the inclusion of a concluding section may be insufficient to satisfy a criterion requiring ‘evaluation’.

Assessors should use the following information and support in reaching assessment decisions:
- the Essential information for assessment decisions section in each unit gives examples and definitions related to terms used in the criteria
- the explanation of key terms in Appendix 2
- examples of assessed work provided by Pearson
- your Lead IV and assessment team’s collective experience, supported by the standardisation materials we provide.

Pass and Merit criteria relate to individual learning aims. The Distinction criteria as a whole relate to outstanding performance across the unit. Therefore, criteria may relate to more than one learning aim (for example A.D1) or to several learning aims (for example DE.D3). Distinction criteria make sure that learners have shown that they can perform consistently at an outstanding level across the unit and/or that they are able to draw learning together across learning aims.

Dealing with late completion of assignments
Learners must have a clear understanding of the centre policy on completing assignments by the deadlines that you give them. Learners may be given authorised extensions for legitimate reasons, such as illness at the time of submission, in line with your centre policies.

For assessment to be fair, it is important that learners are all assessed in the same way and that some learners are not advantaged by having additional time or the opportunity to learn from others. Therefore, learners who do not complete assignments by your planned deadline or the authorised extension deadline may not have the opportunity to subsequently resubmit.

If you accept a late completion by a learner, then the assignment should be assessed normally when it is submitted using the relevant assessment criteria.
Issuing assessment decisions and feedback

Once the assessment team has completed the assessment process for an assignment, the outcome is a formal assessment decision. This is recorded formally and reported to learners.

The information given to the learner:
- must show the formal decision and how it has been reached, indicating how or where criteria have been met
- may show why attainment against criteria has not been demonstrated
- must not provide feedback on how to improve evidence
- must be validated by an IV before it is given to the learner.

Resubmission of improved evidence

An assignment provides the final assessment for the relevant learning aims and is normally a final assessment decision, except where the Lead IV approves one opportunity to resubmit improved evidence based on the completed assignment brief.

The Lead IV has the responsibility to make sure that resubmission is operated fairly. This means:
- checking that a learner can be reasonably expected to perform better through a second submission, for example that the learner has not performed as expected
- making sure that giving a further opportunity can be done in such a way that it does not give an unfair advantage over other learners, for example through the opportunity to take account of feedback given to other learners
- checking that the assessor considers that the learner will be able to provide improved evidence without further guidance and that the original evidence submitted remains valid.

Once an assessment decision has been given to the learner, the resubmission opportunity must have a deadline within 15 working days in the same academic year.

A resubmission opportunity must not be provided where learners:
- have not completed the assignment by the deadline without the centre’s agreement
- have submitted work that is not authentic.

Retake of internal assessment

A learner who has not achieved the level of performance required to pass the relevant learning aims after resubmission of an assignment may be offered a single retake opportunity using a new assignment. The retake may only be achieved at a pass.

The Lead Internal Verifier must only authorise a retake of an assignment in exceptional circumstances where they believe it is necessary, appropriate and fair to do so. For further information on offering a retake opportunity, you should refer to the BTEC Centre Guide to Assessment. We provide information on writing assignments for retakes on our website (www.btec.co.uk/keydocuments).
Planning and record keeping

For internal processes to be effective, an assessment team needs to be well organised and keep effective records. The centre will also work closely with us so that we can quality assure that national standards are being satisfied. This process gives stakeholders confidence in the assessment approach.

The Lead IV must have an assessment plan, produced as a spreadsheet or using myBTEC. When producing a plan, the assessment team may wish to consider:

- the time required for training and standardisation of the assessment team
- the time available to undertake teaching and carry out assessment, taking account of when learners may complete external assessments and when quality assurance will take place
- the completion dates for different assignments
- who is acting as IV for each assignment and the date by which the assignment needs to be verified
- setting an approach to sampling assessor decisions though internal verification that covers all assignments, assessors and a range of learners
- how to manage the assessment and verification of learners’ work so that they can be given formal decisions promptly
- how resubmission opportunities can be scheduled.

The Lead IV will also maintain records of assessment undertaken. The key records are:

- verification of assignment briefs
- learner authentication declarations
- assessor decisions on assignments, with feedback given to learners
- verification of assessment decisions.

Examples of records and further information are given in the Pearson Quality Assurance Handbook.
7 Administrative arrangements

Introduction

This section focuses on the administrative requirements for delivering a BTEC qualification. It will be of value to Quality Nominees, Lead IVs, Programme Leaders and Examinations Officers.

Learner registration and entry

Shortly after learners start the programme of learning, you need to make sure that they are registered for the qualification and that appropriate arrangements are made for internal and external assessment. You need to refer to the Information Manual for information on making registrations for the qualification and entries for external assessments.

Learners can be formally assessed only for a qualification on which they are registered. If learners’ intended qualifications change, for example if a learner decides to choose a different pathway specialism, then the centre must transfer the learner appropriately.

Access to assessment

Both internal and external assessments need to be administered carefully to ensure that all learners are treated fairly, and that results and certification are issued on time to allow learners to progress to chosen progression opportunities.

Our equality policy requires that all learners should have equal opportunity to access our qualifications and assessments, and that our qualifications are awarded in a way that is fair to every learner. We are committed to making sure that:

- learners with a protected characteristic are not, when they are undertaking one of our qualifications, disadvantaged in comparison to learners who do not share that characteristic
- all learners achieve the recognition they deserve for undertaking a qualification and that this achievement can be compared fairly to the achievement of their peers.

Further information on access arrangements can be found in the Joint Council for Qualifications (JCQ) document Access Arrangements, Reasonable Adjustments and Special Consideration for General and Vocational Qualifications.
Administrative arrangements for internal assessment

Records
You are required to retain records of assessment for each learner. Records should include assessments taken, decisions reached and any adjustments or appeals. Further information can be found in the Information Manual. We may ask to audit your records so they must be retained as specified.

Reasonable adjustments to assessment
A reasonable adjustment is one that is made before a learner takes an assessment to ensure that they have fair access to demonstrate the requirements of the assessments. You are able to make adjustments to internal assessments to take account of the needs of individual learners. In most cases this can be achieved through a defined time extension or by adjusting the format of evidence. We can advise you if you are uncertain as to whether an adjustment is fair and reasonable. You need to plan for time to make adjustments if necessary.

Further details on how to make adjustments for learners with protected characteristics are given on our website in the document Supplementary guidance for reasonable adjustment and special consideration in vocational internally-assessed units.

Special consideration
Special consideration is given after an assessment has taken place for learners who have been affected by adverse circumstances, such as illness. You must operate special consideration in line with our policy (see previous paragraph). You can provide special consideration related to the period of time given for evidence to be provided or for the format of the assessment if it is equally valid. You may not substitute alternative forms of evidence to that required in a unit, or omit the application of any assessment criteria to judge attainment. Pearson can consider applications for special consideration in line with the policy.

Appeals against assessment
Your centre must have a policy for dealing with appeals from learners. These appeals may relate to assessment decisions being incorrect or assessment not being conducted fairly. The first step in such a policy could be a consideration of the evidence by a Lead IV or other member of the programme team. The assessment plan should allow time for potential appeals after assessment decisions have been given to learners. If there is an appeal by a learner, you must document the appeal and its resolution. Learners have a final right of appeal to Pearson but only if the procedures that you have put in place have not been followed. Further details are given in the document Enquiries and appeals about Pearson vocational qualifications and end point assessment policy.
Administrative arrangements for external assessment

Entries and resits
For information on the timing of assessment and entries, please refer to the annual examinations timetable on our website.

Access arrangements requests
Access arrangements are agreed with Pearson before an assessment. They allow students with special educational needs, disabilities or temporary injuries to:
- access the assessment
- show what they know and can do without changing the demands of the assessment.
Access arrangements should always be processed at the time of registration. Learners will then know what type of arrangements are available in place for them.

Granting reasonable adjustments
For external assessment, a reasonable adjustment is one that we agree to make for an individual learner. A reasonable adjustment is defined for the individual learner and informed by the list of available access arrangements.
Whether an adjustment will be considered reasonable will depend on a number of factors, to include:
- the needs of the learner with the disability
- the effectiveness of the adjustment
- the cost of the adjustment; and
- the likely impact of the adjustment on the learner with the disability and other learners.
Adjustment may be judged unreasonable and not approved if it involves unreasonable costs, timeframes or affects the integrity of the assessment.

Special consideration requests
Special consideration is an adjustment made to a student's mark or grade after an external assessment to reflect temporary injury, illness or other indisposition at the time of the assessment. An adjustment is made only if the impact on the learner is such that it is reasonably likely to have had a material effect on that learner being able to demonstrate attainment in the assessment.
Centres are required to notify us promptly of any learners who they believe have been adversely affected and request that we give special consideration. Further information can be found in the special requirements section on our website.
Conducting external assessments

Centres must make arrangements for the secure delivery of external assessments. External assessments for BTEC qualifications include examinations, set tasks and performance.

Each external assessment has a defined degree of control under which it must take place. Some external assessments may have more than one part and each part may have a different degree of control. We define degrees of control as follows.

High control
This is the completion of assessment in formal invigilated examination conditions.

Medium control
This is completion of assessment, usually over a longer period of time, which may include a period of controlled conditions. The controlled conditions may allow learners to access resources, prepared notes or the internet to help them complete the task.

Low control
These are activities completed without direct supervision. They may include research, preparation of materials and practice. The materials produced by learners under low control will not be directly assessed.

Further information on responsibilities for conducting external assessment is given in the document Instructions for Conducting External Assessments, available on our website.
Dealing with malpractice in assessment

Malpractice means acts that undermine the integrity and validity of assessment, the certification of qualifications, and/or that may damage the authority of those responsible for delivering the assessment and certification.

Pearson does not tolerate actions (or attempted actions) of malpractice by learners, centre staff or centres in connection with Pearson qualifications. Pearson may impose penalties and/or sanctions on learners, centre staff or centres where incidents (or attempted incidents) of malpractice have been proven.

Malpractice may arise or be suspected in relation to any unit or type of assessment within the qualification. For further details regarding malpractice and advice on preventing malpractice by learners please see Pearson’s Centre guidance: Dealing with malpractice and maladministration in vocational qualifications, available on our website.

The procedures we ask you to adopt vary between units that are internally-assessed and those that are externally-assessed.

Internally-assessed units

Centres are required to take steps to prevent malpractice and to investigate instances of suspected malpractice. Learners must be given information that explains what malpractice is for internal assessment and how suspected incidents will be dealt with by the centre. The Centre Guidance: Dealing with Malpractice document gives full information on the actions we expect you to take.

Pearson may conduct investigations if we believe that a centre is failing to conduct internal assessment according to our policies. The above document gives further information, examples and details the penalties and sanctions that may be imposed.

In the interests of learners and centre staff, centres need to respond effectively and openly to all requests relating to an investigation into an incident of suspected malpractice.

Externally-assessed units

External assessment means all aspects of units that are designated as external in this specification, including preparation for tasks and performance. For these assessments centres must follow the JCQ procedures set out in the latest version of JCQ Suspected Malpractice in Examinations and Assessments Policies and Procedures (www.jcq.org.uk).

In the interests of learners and centre staff, centres need to respond effectively and openly to all requests relating to an investigation into an incident of suspected malpractice.

Learner malpractice

Heads of Centres are required to report incidents of any suspected learner malpractice that occur during Pearson external assessments. We ask that centres do so by completing a JCQ Form M1 (available at www.jcq.org.uk/exams-office/malpractice) and emailing it and any accompanying documents (signed statements from the learner, invigilator, copies of evidence, etc.) to the Investigations Team at candidatemalpractice@pearson.com. The responsibility for determining appropriate sanctions or penalties to be imposed on learners lies with Pearson.

Learners must be informed at the earliest opportunity of the specific allegation and the centre’s malpractice policy, including the right of appeal. Learners found guilty of malpractice may be disqualified from the qualification for which they have been entered with Pearson.
Teacher/centre malpractice

Heads of Centres are required to inform Pearson’s Investigations Team of any incident of suspected malpractice by centre staff, before any investigation is undertaken. Heads of centres are requested to inform the Investigations Team by submitting a JCQ Form M2(a) (available at www.jcq.org.uk/exams-office/malpractice) with supporting documentation to pqsmalpractice@pearson.com. Where Pearson receives allegations of malpractice from other sources (for example Pearson staff or anonymous informants), the Investigations Team will conduct the investigation directly or may ask the head of centre to assist.

Incidents of maladministration (accidental errors in the delivery of Pearson qualifications that may affect the assessment of learners) should also be reported to the Investigations Team using the same method.

Heads of Centres/Principals/Chief Executive Officers or their nominees are required to inform learners and centre staff suspected of malpractice of their responsibilities and rights; see Section 6.15 of the JCQ Suspected Malpractice in Examinations and Assessments Policies and Procedures document.

Pearson reserves the right in cases of suspected malpractice to withhold the issuing of results and/or certificates while an investigation is in progress. Depending on the outcome of the investigation results and/or certificates may be released or withheld.

You should be aware that Pearson may need to suspend certification when undertaking investigations, audits and quality assurances processes. You will be notified within a reasonable period of time if this occurs.

Sanctions and appeals

Where malpractice is proven we may impose sanctions or penalties.

Where learner malpractice is evidenced, penalties may be imposed such as:
- mark reduction for external assessments
- disqualification from the qualification
- being barred from registration for Pearson qualifications for a period of time.

If we are concerned about your centre’s quality procedures we may impose sanctions such as:
- working with you to create an improvement action plan
- requiring staff members to receive further training
- placing temporary blocks on your certificates
- placing temporary blocks on registration of learners
- debarring staff members or the centre from delivering Pearson qualifications
- suspending or withdrawing centre approval status.

The centre will be notified if any of these apply.

Pearson has established procedures for centres that are considering appeals against penalties and sanctions arising from malpractice. Appeals against a decision made by Pearson will normally be accepted only from Heads of Centres (on behalf of learners and/or members of staff) and from individual members (in respect of a decision taken against them personally). Further information on appeals can be found in our Enquiries and appeals about Pearson vocational qualifications and end point assessment policy, which is on our website. In the initial stage of any aspect of malpractice, please notify the Investigations Team by email via pqsmalpractice@pearson.com who will inform you of the next steps.
Certification and results

Once a learner has completed all the required components for a qualification, even if final results for external assessments have not been issued, then the centre can claim certification for the learner, provided that quality assurance has been successfully completed. For the relevant procedures please refer to our Information Manual. You can use the information provided on qualification grading to check overall qualification grades.

Results issue

After the external assessment session, learner results will be issued to centres. The result will be in the form of a grade. You should be prepared to discuss performance with learners, making use of the information we provide and post-results services.

Post-assessment services

Once results for external assessments are issued, you may find that the learner has failed to achieve the qualification or to attain an anticipated grade. It is possible to transfer or reopen registration in some circumstances. The Information Manual gives further information.

Changes to qualification requests

Where a learner who has taken a qualification wants to resit an externally-assessed unit to improve their qualification grade, you firstly need to decline their overall qualification grade. You may decline the grade before the certificate is issued. For a learner receiving their results in August, you should decline the grade by the end of September if the learner intends to resit an external assessment.

Additional documents to support centre administration

As an approved centre you must ensure that all staff delivering, assessing and administering the qualifications have access to this documentation. These documents are reviewed annually and are reissued if updates are required.

- **Pearson Quality Assurance Handbook**: this sets out how we will carry out quality assurance of standards and how you need to work with us to achieve successful outcomes.
- **Information Manual**: this gives procedures for registering learners for qualifications, transferring registrations, entering for external assessments and claiming certificates.
- **Lead Examiners’ Reports**: these are produced after each series for each external assessment and give feedback on the overall performance of learners in response to tasks or questions set.
- **Instructions for the Conduct of External Assessments (ICEA)**: this explains our requirements for the effective administration of external assessments, such as invigilation and submission of materials.
- **Regulatory policies**: our regulatory policies are integral to our approach and explain how we meet internal and regulatory requirements. We review the regulated policies annually to ensure that they remain fit for purpose. Policies related to this qualification include:
 o adjustments for candidates with disabilities and learning difficulties, access arrangements and reasonable adjustments for general and vocational qualifications
 o age of learners
 o centre guidance for dealing with malpractice
 o recognition of prior learning and process.

This list is not exhaustive and a full list of our regulatory policies can be found on our website.
8 Quality assurance

Centre and qualification approval

As part of the approval process, your centre must make sure that the resource requirements listed below are in place before offering the qualification.

- Centres must have appropriate physical resources (for example, equipment, IT, learning materials, teaching rooms) to support the delivery and assessment of the qualification.
- Staff involved in the assessment process must have relevant expertise and/or occupational experience.
- There must be systems in place to ensure continuing professional development for staff delivering the qualification.
- Centres must have in place appropriate health and safety policies relating to the use of equipment by learners.
- Centres must deliver the qualification in accordance with current equality legislation.
- Centres should refer to the teacher guidance section in individual units to check for any specific resources required.

Continuing quality assurance and standards verification

On an annual basis, we produce the Pearson Quality Assurance Handbook. It contains detailed guidance on the quality processes required to underpin planning for delivery, including appropriate employer involvement, and for robust assessment and internal verification.

The key principles of quality assurance are that:

- a centre delivering BTEC programmes must be an approved centre, and must have approval for the programmes or groups of programmes that it is delivering
- the centre agrees, as part of gaining approval, to abide by specific terms and conditions around the effective delivery and quality assurance of assessment; it must abide by these conditions throughout the period of delivery
- Pearson makes available to approved centres a range of materials and opportunities, through online standardisation, intended to exemplify the processes required for effective assessment, and examples of effective standards. Approved centres must use the materials and services to ensure that all staff delivering BTEC qualifications keep up to date with the guidance on assessment
- an approved centre must follow agreed protocols for standardisation of assessors and verifiers, for the planning, monitoring and recording of assessment processes, and for dealing with special circumstances, appeals and malpractice.

The approach of quality-assured assessment is through a partnership between an approved centre and Pearson. We will make sure that each centre follows best practice and employs appropriate technology to support quality-assurance processes, where practicable. We work to support centres and seek to make sure that our quality-assurance processes do not place undue bureaucratic processes on centres. We monitor and support centres in the effective operation of assessment and quality assurance.

The methods we use to do this for BTEC Level 3 include:

- making sure that all centres complete appropriate declarations at the time of approval
- undertaking approval visits to centres
- making sure that centres have effective teams of assessors and verifiers who are trained to undertake assessment
- undertaking an overarching review and assessment of a centre’s strategy for ensuring sufficient and appropriate engagement with employers at the beginning of delivery of any BTEC programme(s)
- undertaking a review of the employer involvement planned at programme level to ensure its appropriateness at a time when additional activities can be scheduled where necessary
- assessment sampling and verification, through requested samples of assessments, completed assessed learner work and associated documentation
• an overarching review and assessment of a centre’s strategy for delivering and quality assuring its BTEC programmes, for example making sure that synoptic units are placed appropriately in the order of delivery of the programme.

Centres that do not fully address and maintain rigorous approaches to delivering, assessing and quality assurance cannot seek certification for individual programmes or for all BTEC Level 3 programmes. An approved centre must make certification claims only when authorised by us and strictly in accordance with requirements for reporting.

Centres that do not comply with remedial action plans may have their approval to deliver qualifications removed.
Understanding the qualification grade

Awarding and reporting for the qualification

This section explains the rules that we apply in awarding a qualification and in providing an overall qualification grade for each learner. It shows how all the qualifications in this sector are graded. The awarding and certification of these qualifications will comply with regulatory requirements.

Eligibility for an award

In order to be awarded a qualification, a learner must complete all units, achieve a Near Pass (N) or above in all external units and a pass or above in all mandatory units unless otherwise specified. Refer to the structure in Section 2.

To achieve any qualification grade, learners must:

- complete and have an outcome (D, M, P, N or U) for all units within a valid combination
- achieve the required units at pass or above shown in Section 2, and for the Diploma achieve a minimum of 600 GLH and Extended Diploma achieve a minimum 900 GLH at Pass or above (or N or above in external units)
- achieve the minimum number of points at a grade threshold.

It is the responsibility of a centre to ensure that a correct unit combination is adhered to.

Learners who do not achieve the required minimum grade (N or P) in units shown in the structure will not achieve a qualification.

Learners who do not achieve sufficient points for a qualification or who do not achieve all the required units may be eligible to achieve a smaller qualification in the same suite provided they have completed and achieved the correct combination of units and met the appropriate qualification grade points threshold.

Calculation of the qualification grade

The final grade awarded for a qualification represents an aggregation of a learner’s performance across the qualification. As the qualification grade is an aggregate of the total performance, there is some element of compensation in that a higher performance in some units may be balanced by a lower outcome in others.

In the event that a learner achieves more than the required number of optional units, the mandatory units along with the optional units with the highest grades will be used to calculate the overall result, subject to the eligibility requirements for that particular qualification title.

BTEC Nationals are Level 3 qualifications and are awarded at the grade ranges shown in the table below.

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Available grade range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate, Extended Certificate, Foundation Diploma</td>
<td>P to D*</td>
</tr>
<tr>
<td>Diploma</td>
<td>PP to DD</td>
</tr>
<tr>
<td>Extended Diploma</td>
<td>PPPP to DDDD</td>
</tr>
</tbody>
</table>

The Calculation of qualification grade table, shown further on in this section, shows the minimum thresholds for calculating these grades. The table will be kept under review over the lifetime of the qualification. The most up to date table will be issued on our website.

Pearson will monitor the qualification standard and reserves the right to make appropriate adjustments.

Learners who do not meet the minimum requirements for a qualification grade to be awarded will be recorded as Unclassified (U) and will not be certificated. They may receive a Notification of Performance for individual units. The Information Manual gives full information.
Points available for internal units
The table below shows the number of points available for internal units. For each internal unit, points are allocated depending on the grade awarded.

<table>
<thead>
<tr>
<th>Unit size</th>
<th>60 GLH</th>
<th>90 GLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pass</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Merit</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Distinction</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

Points available for external units
Raw marks from the external units will be awarded points based on performance in the assessment. The table below shows the minimum number of points available for each grade in the external units.

<table>
<thead>
<tr>
<th>Unit size</th>
<th>90 GLH</th>
<th>120 GLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Near Pass</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Pass</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Merit</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Distinction</td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>

Pearson will automatically calculate the points for each external unit once the external assessment has been marked and grade boundaries have been set. For more details about how we set grade boundaries in the external assessment please go to our website.

Claiming the qualification grade
Subject to eligibility, Pearson will automatically calculate the qualification grade for your learners when the internal unit grades are submitted and the qualification claim is made. Learners will be awarded qualification grades for achieving the sufficient number of points within the ranges shown in the relevant Calculation of qualification grade table for the cohort.
Calculation of qualification grade

Applicable for registration from 1 September 2017.

<table>
<thead>
<tr>
<th>Extended Certificate</th>
<th>Foundation Diploma</th>
<th>Diploma</th>
<th>Extended Diploma</th>
</tr>
</thead>
<tbody>
<tr>
<td>360 GLH</td>
<td>540 GLH</td>
<td>720 GLH</td>
<td>1080 GLH</td>
</tr>
<tr>
<td>Grade</td>
<td>Points threshold</td>
<td>Grade</td>
<td>Points threshold</td>
</tr>
<tr>
<td>U</td>
<td>0</td>
<td>U</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>36</td>
<td>P</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MMP</td>
</tr>
<tr>
<td>M</td>
<td>52</td>
<td>M</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DDM</td>
</tr>
<tr>
<td>D</td>
<td>74</td>
<td>D</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D*D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D*</td>
<td>90</td>
<td>D*</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table is subject to review over the lifetime of the qualification. The most up-to-date version will be issued on our website.
Examples of grade calculations based on table applicable to registrations from September 2016

Example 1: Achievement of an Extended Certificate with a P grade

<table>
<thead>
<tr>
<th>GLH</th>
<th>Type (Int/Ext)</th>
<th>Grade</th>
<th>Unit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>120</td>
<td>Ext Pass</td>
<td>12</td>
</tr>
<tr>
<td>Unit 2</td>
<td>120</td>
<td>Ext Merit</td>
<td>20</td>
</tr>
<tr>
<td>Unit 4</td>
<td>60</td>
<td>Int Merit</td>
<td>10</td>
</tr>
<tr>
<td>Unit 5</td>
<td>60</td>
<td>Int Unclassified</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>360</td>
<td>P</td>
<td>42</td>
</tr>
</tbody>
</table>

The learner has achieved a Near Pass or above in Units 1 and 2.
The learner has sufficient points for a P grade.

Example 2: Achievement of an Extended Certificate with a M grade

<table>
<thead>
<tr>
<th>GLH</th>
<th>Type (Int/Ext)</th>
<th>Grade</th>
<th>Unit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>120</td>
<td>Ext Distinction</td>
<td>32</td>
</tr>
<tr>
<td>Unit 2</td>
<td>120</td>
<td>Ext Near Pass</td>
<td>8</td>
</tr>
<tr>
<td>Unit 4</td>
<td>60</td>
<td>Int Distinction</td>
<td>16</td>
</tr>
<tr>
<td>Unit 5</td>
<td>60</td>
<td>Int Distinction</td>
<td>16</td>
</tr>
<tr>
<td>Totals</td>
<td>360</td>
<td>M</td>
<td>72</td>
</tr>
</tbody>
</table>

The learner has sufficient points for a M grade.

Example 3: An Unclassified Result for an Extended Certificate

<table>
<thead>
<tr>
<th>GLH</th>
<th>Type (Int/Ext)</th>
<th>Grade</th>
<th>Unit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>120</td>
<td>Ext Distinction</td>
<td>32</td>
</tr>
<tr>
<td>Unit 2</td>
<td>120</td>
<td>Ext Unclassified</td>
<td>0</td>
</tr>
<tr>
<td>Unit 4</td>
<td>60</td>
<td>Int Distinction</td>
<td>16</td>
</tr>
<tr>
<td>Unit 5</td>
<td>60</td>
<td>Int Merit</td>
<td>10</td>
</tr>
<tr>
<td>Totals</td>
<td>360</td>
<td>U</td>
<td>58</td>
</tr>
</tbody>
</table>

The learner has a U in Unit 2.
The learner has sufficient points for an M grade but has not met the minimum requirement for a Near Pass in Units 1 and 2.
10 Resources and support

Our aim is to give you a wealth of resources and support to enable you to deliver BTEC National qualifications with confidence. On our website you will find a list of resources to support teaching and learning, and professional development.

Support for setting up your course and preparing to teach

Specification
This specification (for teaching from September 2017) includes details on the administration of qualifications and information on all the units for the qualification.

Delivery Guide
This free guide gives you important advice on how to choose the right course for your learners and how to ensure you are fully prepared to deliver the course. It explains the key features of BTEC Nationals (for example employer involvement and employability skills). It also covers guidance on assessment (internal and external) and quality assurance. The guide tells you where you can find further support and gives detailed unit-by-unit delivery guidance. It includes teaching tips and ideas, assessment preparation and suggestions for further resources.

Schemes of work
Free sample schemes of work are provided for each mandatory unit. These are available in Word™ format for ease of customisation.

Curriculum models
These show how the BTECs in the suite fit into a 16–19 study programme, depending on their size and purpose. The models also show where other parts of the programme, such as work experience, maths and English, tutorial time and wider study, fit alongside the programme.

Study skills activities
A range of case studies and activities is provided; they are designed to help learners develop the study skills they need to successfully complete their BTEC course. The case studies and activities are provided in Word™ format for easy customisation.

myBTEC
myBTEC is a free, online toolkit that lets you plan and manage your BTEC provision from one place. It supports the delivery, assessment and quality assurance of BTECs in centres and supports teachers with the following activities:
• checking that a programme is using a valid combination of units
• creating and verifying assignment briefs (including access to a bank of authorised assignment briefs that can be customised)
• creating assessment plans and recording assessment decisions
• tracking the progress of every learner throughout their programme.
To find out more about myBTEC, visit the myBTEC page on the support services section of our website. We will add the new BTEC National specifications to myBTEC as soon as possible.
Support for teaching and learning

Pearson Learning Services provides a range of engaging resources to support BTEC Nationals, including:

- textbooks in e-book and print formats
- revision guides and revision workbooks in e-book and print formats
- teaching and assessment packs, including e-learning materials via the Active Learn Digital Service.

Teaching and learning resources are also available from a number of other publishers. Details of Pearson’s own resources and of all endorsed resources can be found on our website.

Support for assessment

Sample assessment materials for externally-assessed units

Sample assessments are available for the Pearson-set units. One copy of each of these assessments can be downloaded from the website/available in print. For each suite an additional sample for one of the Pearson-set units is also available, allowing your learners further opportunities for practice.

Further sample assessments will be made available through our website on an ongoing basis.

Sample assessment materials for internally-assessed units

We do not prescribe the assessments for the internally-assessed units. Rather, we allow you to set your own, according to your learners’ preferences and to link with your local employment profile.

We do provide a service in the form of Authorised Assignment Briefs, which are approved by Pearson Standards Verifiers. They are available via our website or free on myBTEC.

Sample marked learner work

To support you in understanding the expectation of the standard at each grade, examples of marked learner work at PM/MD grades are linked to the Authorised Assignment Briefs.
Training and support from Pearson

People to talk to

There are many people who are available to support you and provide advice and guidance on delivery of your BTEC Nationals. These include:

- Subject Advisors – available for all sectors. They understand all Pearson qualifications in their sector and so can answer sector-specific queries on planning, teaching, learning and assessment
- Standards Verifiers – they can support you with preparing your assignments, ensuring that your assessment plan is set up correctly, and support you in preparing learner work and providing quality assurance through sampling
- Curriculum Development Managers (CDMs) – they are regionally based and have a full overview of the BTEC qualifications and of the support and resources that Pearson provides. CDMs often run network events
- Customer Services – the ‘Support for You’ section of our website gives the different ways in which you can contact us for general queries. For specific queries, our service operators can direct you to the relevant person or department.

Training and professional development

Pearson provides a range of training and professional development events to support the introduction, delivery, assessment and administration of BTEC National qualifications. These sector-specific events, developed and delivered by specialists, are available both face to face and online.

‘Getting Ready to Teach’

These events are designed to get teachers ready for delivery of the BTEC Nationals. They include an overview of the qualifications’ structures, planning and preparation for internal and external assessment, and quality assurance.

Teaching and learning

Beyond the ‘Getting Ready to Teach’ professional development events, there are opportunities for teachers to attend sector- and role-specific events. These events are designed to connect practice to theory; they provide teacher support and networking opportunities with delivery, learning and assessment methodology.

Details of our training and professional development programme can be found on our website.
Appendix 1 Links to industry standards

BTEC Nationals have been developed in consultation with industry and appropriate sector bodies to ensure that the qualification content and approach to assessment aligns closely to the needs of employers. Where they exist, and are appropriate, National Occupational Standards (NOS) and professional body standards have been used to establish unit content.

In the construction and the built environment sector, the following approach has been used.

- The mandatory content has been mapped to NOS to reflect the essential skills and knowledge needed for entry to employment.
Appendix 2 Glossary of terms used for internally-assessed units

This is a summary of the key terms used to define the requirements in the units.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Analyse | Learners present the outcome of methodical and detailed examination, either:
• breaking down a theme, topic or situation in order to interpret and study the interrelationships between the parts and/or
• of information or data to interpret and study key trends and interrelationships.
Analysis can be through performance, practice, written or, less commonly, verbal presentation. |
| Assess | Learners present a careful consideration of varied factors or events that apply to a specific situation or, to identify those which are the most important or relevant and arrive at a conclusion. |
| Carry out | Learners demonstrate skills through practical activities, in line with certain requirements. Learners do this in order to complete an identified activity or to demonstrate personal achievement for an audience. |
| Compare | Learners identify the main factors relating to two or more items/situations or aspects of a subject that is extended to explain the similarities, differences, advantages and disadvantages.
This is used to show depth of knowledge through selection and isolation of characteristics. |
| Demonstrate| Learners’ work, performance or practice evidences the ability to carry out and apply knowledge, understanding and/or skills in a practical situation. |
| Develop | Learners acquire and apply skills and understanding through practical activities that involve the use of concepts, processes or techniques to expand or progress something. |
| Discuss | Learners consider different aspects of:
• a theme or topic;
• how they interrelate; and
• the extent to which they are important.
A conclusion is not required. |

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Evaluate | Learners’ work draws on varied information, themes or concepts to consider aspects such as:
- strengths or weaknesses
- advantages or disadvantages
- alternative actions
- relevance or significance.
Learners’ inquiries should lead to a supported judgement showing relationship to its context. This will often be in a conclusion.
Evidence of explanations could be through visual explanations with annotations, as well as written work, presentation, performance or practice. |
| Examine | Learners select and apply knowledge to less familiar contexts. |
| Explain | Learners’ work shows clear detail and gives reasons and/or evidence to support an opinion, view or argument. It could show how conclusions are drawn (arrived at). Learners show that they comprehend the origins, functions and objectives of a subject, and its suitability for purpose. |
| Explore | Learners apply their skills and/or knowledge in contexts involving practical research or investigation. |
| Investigate | Learners’ application of knowledge is based on personal research and development. |
| Justify | Learners give reasons or evidence to:
- support an opinion
- prove something right or reasonable. |
| Perform | Learners demonstrate a range of skills required to complete a given activity. |
| Review | Learners make a formal assessment of work produced.
The assessment allows learners to appraise existing information or prior events, and reconsider information with the intention of making changes, if necessary. |
| Understand | Learners demonstrate knowledge related to defined situations. |
| Undertake | Learners demonstrate skills through practical activities, often referring to given processes or techniques. |
This is a key summary of the types of evidence used for BTEC Nationals.

<table>
<thead>
<tr>
<th>Type of evidence</th>
<th>Definition and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case study</td>
<td>A specific example to which all learners must select and apply knowledge. Used to show application to a realistic context where direct experience cannot be gained.</td>
</tr>
<tr>
<td>Individual project</td>
<td>A self-directed, large-scale activity requiring, planning, research, exploration, outcome and review. Used to show self-management, project management and/or deep learning, including synopticity.</td>
</tr>
<tr>
<td>Practical task (artefact/outcome)</td>
<td>Learners carry out a defined or self-defined task to produce an outcome.</td>
</tr>
<tr>
<td>Presentation</td>
<td>To show presentation skills, including communication. To direct to a given audience and goal. To extract and summarise information.</td>
</tr>
<tr>
<td>Written task/report</td>
<td>Individual completion of a task in a work-related format, e.g. a report, marketing communication, set of instructions.</td>
</tr>
</tbody>
</table>
Pearson
BTEC Level 3 Nationals in
Construction and the Built Environment

Extended Certificate in Construction and the Built Environment

- Foundation Diploma in Construction and the Built Environment
- Diploma in Construction and the Built Environment
- Extended Diploma in Construction and the Built Environment
- Diploma in Building Services Engineering
- Extended Diploma in Building Services Engineering
- Diploma in Civil Engineering
- Extended Diploma in Civil Engineering

First teaching from September 2017
First certification from 2018

For more information about Edexcel, BTEC or LCCI qualifications visit qualifications.pearson.com

BTEC is a registered trademark of Pearson Education Limited
Pearson Education Limited. Registered in England and Wales No. 872828
Registered Office: 80 Strand, London WC2R 0RL
VAT Reg No GB 278 537121