Pearson BTEC Level 3 Nationals Extended Diploma

Tuesday 14 January 2020

Morning (Time: 1 hour 30 minutes)

Paper Reference 20075K

Construction and the Built Environment

Unit 1: Construction Principles

Information Booklet

Do not return this booklet with the question paper.

Instructions

- You will need the information in this booklet to answer some questions.
- Read the information carefully.
- You must **not** write your answers in this booklet.
- Only answers given in your question paper booklet will be marked.

Turn over ►

Month	Sunshine (hours)		Days of air frost (days)		Monthly mean wind speed (at 10m) (knots)	
Location	Α	В	Α	В	Α	В
January	56	54	7	7	11	14
February	79	80	7	8	10	13
March	120	112	3	3	10	13
April	179	156	1	1	9	11
Мау	222	206	0	1	9	11
June	217	191	0	0	8	10
July	224	205	0	0	8	9
August	192	190	0	0	8	10
September	161	142	0	0	8	11
October	105	104	1	1	10	12
November	68	65	2	2	11	12
December	51	51	6	7	10	14

Figure 3

Hours of sunshine, days of air frost and mean monthly wind speed for the two proposed development locations

Figure 4

Wall construction detail

Formulae and constants

Surface areas of regular shapes

Total surface area of a cylinder, $TSA = 2\pi rh + 2\pi r^2$ Curved surface area of cone, $CSA = \pi rl$

Surface area of a sphere, $SA = 4\pi r^2$

Area of a sector of a circle, $A = \frac{1}{2}r^2\theta$

Volumes of regular shapes

Volume of a cylinder, $V = \pi r^2 h$ Volume of sphere, $V = \frac{4}{3} \pi r^3$ Volume of a cone, $V = \frac{1}{3} \pi r^2 h$

Geometric techniques

Pythagoras' theorem $a^2 = b^2 + c^2$, where angle A is a right angle

Radians, arc lengths and areas of sectors

Length of an arc of a circle, $s = r\theta$

Graphical techniques

Equation of a straight line, y = mx + c

Forces, stress, strain and modulus of elasticity

Relationship between force (load), mass and acceleration due to gravity, F = mg

Direct stress, $\sigma = \frac{F}{A}$ Direct strain, $\varepsilon = \frac{\Delta L}{L}$ Shear stress, $\tau = \frac{F}{A}$ Shear strain, $\gamma = \frac{\alpha}{\beta}$ Modulus of elasticity, $E = \frac{\sigma}{\varepsilon}$ Hooke's law, F = -Kx

Resolution of forces in perpendicular directions, $Fx = F\cos\theta$, $Fy = F\sin\theta$

Equilibrium conditions to ensure stability of a beam $\Sigma F x = 0$, $\Sigma F y = 0$ and $\Sigma M = 0$

Moment of a force: $moment = force \times distance$

Human comfort effect of temperature on construction materials while in situ Thermal resistance $(R_c) = \frac{thickness \ of \ material}{thermal \ conductivity}$

Calculation of U-values: $U = \frac{1}{R_c}$, $U = \frac{thermal \ conductivity}{thickness \ of \ material}$

Application of mathematical methods to determine lighting requirements

Inverse square law of illumination, $E = \frac{I}{2}$

Cosine law of illumination, $E = \frac{I}{d^2} \cos \theta$

d is the distance between the light source and the point being illuminated

Application of mathematical methods for acoustic comfort

Absorption of a room, $A = \Sigma S_i \alpha_i$

Sound absorption coefficient, $\alpha = I_a / I_i$

Mean sound absorption coefficient, $\alpha_{_{\rm m}} = A \ / \ S$

Constants

Acceleration due to gravity, $g = 9.81 \text{ m/s}^2$

 $\pi = 3.142$

BLANK PAGE

BLANK PAGE