

Mark Scheme (Result)

October 2020

Pearson Edexcel GCE In A level Further Mathematics Paper 9FM0/3D

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020 Publications Code 9FM0_3D_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- **4.** All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Questi on	Scheme	Marks	AOs
1(a)	A Z^{2} D 4^{2} F G	M1 A1	1.1b 1.1b
		(2)	
(b)	Kruskal's algorithm: AD, AB, BC, CG, reject BD, EG, reject CE, reject CD, reject AE, CF (reject EF, reject FG, reject DF)	M1 A1 A1 (3)	1.1b 1.1b 1.1b
(c)	Weight of MST: 162 (km)	B1	1.1b
		(1)	
		(6 n	narks)
	Notes for Question 1		
A1: CA0 (b) M1: Kru point A1: All s A1: CS0 (c)	her all arcs correct (ignore weights) or two arcs correct (including correct we c) askal's algorithm – first three arcs correctly chosen and at least one rejection six arcs selected correctly AD, AB, BC, CG, EG, CF only D – all selections and rejections correct (in correct order and at the correct tin D (condone lack of units)	i seen at so	ome

Questi on				Schem	e			Marks	AOs
2(a)	The dummy at the end of activity B is required as F (and G) are dependent on activity B only, but activity H is dependent on both activities B and C								2.4
	The dummy at the end of activity K is required as two activities cannot start at the same event and finish at the same event								2.4
		(2)							
(b)	Activity	IPA	Activity	IPA	Activity	IPA			
	A	-	E	Α	Ι	E, F		B1	1.1b
	В	-	F	B	J	G, H			1 11
	С	-	G	B	K	D, I		B1	1.1b
	D	A	Н	B, C	L	D, I			
								(2)	
(c)(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1.1b 1.1b 1.1b 1.1b
(c)(ii)	Minimum			nours				A1ft	1.1b
(c)(iii)	Critical act	ivities:	A, E, I, L					A1	1.1b
								(6)	
(d)	e.g. $\begin{array}{c} \bullet\\ &\bullet\\ &\bullet\\ &\bullet\\ &\bullet\\ &\bullet\\ &\bullet\\ &\bullet\\ &\bullet\\ &\bullet\\ $							M1 A1 A1	1.1b 1.1b 1.1b
								(3)	

(c)			
(e)	Currently five workers are required between time 7 and 10 and so one of the non-critical activities D, F, G or H would have to be delayed and start after time 10	M1	2.4
	e.g. Activity H could be delayed and start at time 10 (as it has sufficient total float and can finish as late as time 15) and so the project can be completed with fewer workers than the number indicated by the resource histogram as J could be delayed too and start at time 15	A1	2.2a
		(2)	
		(15	marks)
	Notes for Question 2		
	rect explanation for precedence dummy (must mention B, C, H and one of F rect explanation for uniqueness dummy	or G)	
	correct rows (not including A, B and C)		
	rows correct (accept blanks for A, B and C)		
(c)(i)			
M1: All	top boxes completed, number generally increasing L to R (condone one "rog	gue")	
	O - Top boxes		
condone	bottom boxes completed, numbers generally decreasing R to L (condone one lack of 0 or 21 for the M mark only	e "rogue"	') –
	O - Bottom boxes		
(c)(ii)	prrect follow through from their completed top boxes		
(c)(iii)	sirect tonow unough nom then completed top boxes		
	rect critical activities (A, E, I and L only)		
(d)			
M1: Plat the time	usible histogram (correct up to time 6) with no holes or overhangs (must go t axis)	to at least	20 on
	ogram correct to time 10		
A1: Hist			
A1: Hist	ogram correct from time 10 to time 21		
A1: Hist (e)			
A1: Hist (e) M1: Exp of D, F,	ogram correct from time 10 to time 21 planation involving the need to delay just one of the non-critical activities (m G or H) to start after time 10 (oe) – follow through their histogram pendent on a correct histogram and correct answer to (c)(i). Correct deduction		

Questi on	Scheme	Marks	AOs
3(a)	Time matrix A B C D E A - 8 4 7 ∞ B 8 - 3 ∞ 10 C 4 3 - ∞ 6 D 7 ∞ 1 - 1 E ∞ 10 6 1 -	B1 B1	1.1b 1.1b
		(2)	
(b)	Time matrix A B C D E A - 7 4 7 10 B 7 - 3 14 9 C 4 3 - 11 6 D 5 4 1 - 1 E 10 9 6 1 - Time matrix Route matrix Route matrix A B C D E A B C D E A B C D E M B C D E A B C D E A B C D E A C D E A B C D E M B C D E A B C D E A B C D D D E D C C </td <td>M1 A1 M1 A1</td> <td>1.1b 1.1b 1.1b 1.1b</td>	M1 A1 M1 A1	1.1b 1.1b 1.1b 1.1b
		(4)	
(c)(i)	NNA: $A - C - B - E - D - A$	B1	1.1b
(ii) (iii)	4 + 3 + 9 + 1 + 5 = 22 minutes A - C - B - C - E - D - C - A	dB1 B1	1.1b 3.2a
		(3)	
	1	(9 n	narks)
	Notes for Question 3		
	rect time matrix rect route matrix		

(b)

M1: No change in the third row and third column of both matrices with at least one value in the time matrix reduced correctly and one value in the route matrix changed to C

A1: CAO

M1: No change in the fourth row and fourth column of both matrices with at least one value in the time matrix reduced correctly (follow through their first iteration) and one value in the route matrix changed to D

A1: CAO

(c)(i) B1: CAO (c)(ii) dB1: CAO – not from A – C – D – E – B – A (c)(iii) B1: CAO

Questi on	Scheme	Marks	AOs
4(a)	$2y \le 5x, y \ge x+1, 6x+5y \le 30$	B2,1,0	1.1b 2.5
		(2)	
(b)	$\left(\frac{2}{3}, \frac{5}{3}\right), \left(\frac{60}{37}, \frac{150}{37}\right), \left(\frac{25}{11}, \frac{36}{11}\right)$	B1 B1	1.1b 1.1b
	$\left(\frac{2}{3},\frac{5}{3}\right) \to P = \frac{11}{3}$		
	$\left(\frac{60}{37}, \frac{150}{37}\right) \rightarrow P = \frac{330}{37}$	M1	2.1
	$\left(\frac{25}{11}, \frac{36}{11}\right) \rightarrow P = \frac{111}{11}$ so optimal vertex is $\left(\frac{25}{11}, \frac{36}{11}\right)$	A1	2.2a
		(4)	
(c)	Q = 3x + ay		
	$3\left(\frac{25}{11}\right) + \frac{36a}{11} > 3\left(\frac{60}{37}\right) + \frac{150a}{37}$	M1	3.1a
	$\Rightarrow a < \frac{5}{2}$	A1	2.2a
	$3\left(\frac{25}{11}\right) + \frac{36a}{11} > 3\left(\frac{2}{3}\right) + \frac{5a}{3}$	M1	1.1b
	$\Rightarrow a > -3$	A1	2.2a
		(4)	
		(10 n	narks)
	Notes for Question 4		
B1: CAC (b) B1: One B1: All t	two correct (accept strict inequalities) – accept equivalent inequalities) (accept equivalent inequalities but inequalities must not be strict) correct vertex (must be exact) hree correct vertices (must be exact)		
	ting all three of their vertices in the correct objective function rect three values of <i>P</i> and correct optimal vertex either stated or clearly indic	cated on th	e

(c) M1: Their optimal point from (b) evaluated in *Q* compared to their $\left(\frac{60}{37}, \frac{150}{37}\right)$ evaluated in *Q* (with correct inequality) A1: $a < \frac{5}{2}$ M1: Their optimal point from (b) evaluated in *Q* compared to their $\left(\frac{2}{3}, \frac{5}{3}\right)$ evaluated in *Q* (with correct inequality) A1: a > -3

Questi on	Scheme	Marks	AOs
5(a)	If <i>x</i> has been placed in Bin 2 then $10 < x \le 31$ - this is because Bin 1 at this stage only contains 40 and before <i>x</i> had been placed in Bin 2 it only contained 19		
	As the 18 has been placed in Bin 3 this implies that $x > 50 - (19 + 18)$ so $x > 13$	B1	3.1a
	As the 10 has been placed in Bin 2 after the <i>x</i> then $x \le 50 - (19 + 10)$ so $x \le 21$	B1	2.4
	However, the number are all distinct and therefore $13 < x < 21$	B1	2.2a
		(3)	
(b)	13 < <i>x</i> < 17	B1 B1	2.2a 2.2a
		(2)	
(c)	If <i>x</i> has been placed in Bin 3 then this implies that $x \le 15$	M1	2.4
	So x is either 14 or 15 – but as Bin 2 is full $\Rightarrow x = 14$	A1	2.2a
		(2)	
		(7 n	narks)
	Notes for Question 5		
(a) B1: Cor	rect reasoning of why $x > 13$ accept $x > 50 - (19 + 18)$		
	rect explanation of why $x \le 21$ accept $x \le 50 - (19 + 10)$		
	rrect deduction that $13 < x < 21$ must mention that the numbers are distinct (be)	
	first complete pass to deduce that $x < 17$ rect lower bound of $x > 13$		
M1: Usi both x c	ng first-fit decreasing in an attempt to derive new upper bound for x (so eith ould equal 14 or 15, $x \le 15$ or $x < 15$)	er for stati	ng
A1 : Cor	rect deduction that $x = 14$ (must clearly state or imply that Bin 2 is full)		

Questi	Scheme	Marks	AOs
on 6(a)	The graph has exactly two odd nodes and so the graph is semi-Eulerian	B1	2.4
		dB1	2.2a
		(2)	
(b)	B 2 24 24 13 19	M1	1.1b
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	1.1b
	58 + x 21 24	A1	1.1b
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	1.1b
	65 60 y 70 60 + y		
	Shortest path from A to F is $58 + x$ and shortest path from A to G is $60 + y$	A1ft	2.2a
	58 + x + 60 + y = 140	M1	2.1
	The only odd nodes in the network are A and G	B1	2.2a
	Route inspection algorithm: Shortest route between A and G is $60 + y$ $\Rightarrow 320 + x + y + 60 + y = 409$	M1	3.1b
	x = 15 and y = 7	A1	2.2a
		(9)	
	·	(11 n	narks)
	Notes for Question 6		
dB1: <u>Ex</u> the dedu	lanation which consists of the graph having two odd nodes or stating graph actly two odd nodes (or two odd nodes and five even nodes or the rest even ction that therefore the graph is semi-Eulerian		
	a larger number replaced by a smaller one in two working value boxes at C all values correct (and in correct order) at A, B and C	c, D, G or H	7
	all values correct (and in correct order) at E and D		
	all values correct (and in correct order) at G and F ngth of shortest path from A to F or A to G stated (may be seen in an equati	ion(s)	
	ingui or shortest paul nom A to r or A to O stated (may be seen ill all equal		

M1: (length of shortest path from A to F) + (length of shortest path from A to G) = 140 – linear equation in *x* and *y*

B1: Correctly stating the two odd nodes (A and G) – could be implied by subsequent working **M1:** For an equation based on the route from A to G (320 + x + y + final value at G (in y) = 409) **A1:** CAO for x and y

Questi on						Scher	ne			Marks	AOs
7(a)	Maximise $(P =) 2x + y + 3z$									B1	3.4
	$x + 2y + 3z \le 45$								B1	3.4	
	$3x + 2y \ge 9$								B1	3.4	
	$-x+4z \ge 4$									B1	1.1b
										(4)	
(b)	A = -	$(a_1 + a_2)$	$a_2) \Rightarrow$	-(9-3	3x-2y-	$+s_{2}+4$	4 + x - 4	$4z + s_3$)		M1	2.1
	A-2	x-2y	-4z + -2	$-s_2 + s_3$ -4	-	theref		om row o	of the table is -13	A1	2.2a
		-			·					(2)	
(c)(i)		-					-	e A is equ en found	al to zero	B1	2.4
(c)(ii)	x = 3,	y = 0,	$z = \frac{7}{4}$	$s_1 = \frac{14}{2}$	$\frac{7}{1}, s_2 =$	$s_3 = 0$				B1 B1	3.4 1.1b
			+		r					(3)	1.10
(d)	b.v	x	У	Z.	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	Value	Row Ops		
	<i>s</i> ₂	0	$\frac{10}{7}$	0	$\frac{12}{7}$	1	$\frac{9}{7}$	63	R1 ÷ $\frac{7}{12}$	M1	2.1
	x	1	$\frac{8}{7}$	0	$\frac{4}{7}$	0	$\frac{3}{7}$	24	$R2 + \frac{1}{3}R1$	A1 M1	1.1b 1.1b
	z	0	$\frac{2}{7}$	1	$\frac{1}{7}$	0	$-\frac{1}{7}$	7	$R3 + \frac{1}{12}R1$	A1 A1	1.1b 1.1b
	P	0	$\frac{15}{7}$	0	$\frac{11}{7}$	0	$\frac{3}{7}$	69	$R4 + \frac{11}{12}R1$		
										(5)	
(e)(i)	Yes, a in the				has bee	n four	nd as the	ere are no	negative values	B1	2.4
(e)(ii)	P=69)								B1ft	3.4
(e)(iii)	$s_2 = 63, x = 24, z = 7$					B1ft	3.4				
										(3)	
										(17 n	narks)

(a) B1: CAO – including maximise (or max) **B1:** CAO (oe) **B1:** CAO (oe) **B1:** CAO (oe) **(b) M1:** Setting up the new objective and substituting for a_1 and a_2 A1: Correct values substituted into Table 1 (c) **B1:** CAO – mention that A = 0**B1:** At least three values stated correctly **B1:** All six values correct (ignore values stated for a_1, a_2 and P) (**d**) M1: Correct pivot located, attempt to divide row A1: Pivot row correct including change of b.v. M1: All values in one of the non-pivot rows correct or one of the non zero and one columns (y, s_1, s_3 or value) correct following through their choice of pivot from column s_2 or s_3 A1: Row operations used correctly at least twice, i.e. two of the non zero and one columns (y, s_1, s_3) or value) correct A1: CAO all values and row operations correctly stated – allow if row operations given in terms of old row 1 – ignore b.v. column for this mark (e)(i) **B1:** Correct reasoning of why solution is optimal or using $P = 69 - \frac{15}{7}y - \frac{11}{7}s_1 - \frac{3}{7}s_3$ and mentioning increasing y, s_1, s_3 would decrease P (oe) (e)(ii) **B1ft:** their value of P – dependent on both M marks in (d) (e)(iii)

B1ft: their values of the basic variables only – dependent on both M marks in (d)