

Mark Scheme (Result)

November 2021

Pearson Edexcel GCE Further Mathematics Advanced Level in Further Mathematics Paper 9FM0/3B

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021 Publications Code 9FM0_3B_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Paper 3B/ 2021: Statistics 1 Mark scheme

Ques	stion	Scheme	Marks	AOs
1(a)	$x = 4 \times 43 - 47 - 34 - 36 = 55^*$	B1*	3.4
			(1)	
(ł))	v = 4 - 1 = 3 since the only constraint is that the totals agree	B1	2.4
			(1)	
(c)		H ₀ : The die is unbiased	B 1	2 1
		H ₁ : The die is biased	DI	2.1
		Test Statistic = $\frac{(47-43)^2}{43} + \frac{(34-43)^2}{43} + \frac{(36-43)^2}{43} + \frac{(55-43)^2}{43}$	M1	1.1b
		= 6.744	A1	1.1b
		$\chi^2_{(3,0.05)} = 7.815$	B1	1.1b
		Not in the critical region since $7.815 > 6.74$ therefore insufficient evidence to reject H ₀ Inconclusive test - consistent with the die being unbiased.	A1	3.5a
			(5)	
			(7 n	narks)
Note	s:			
(a)	B1*:	Using the uniform model to show the missing observed value eg $x = \frac{43 - 0.25 \times (47 + 34 + 36)}{0.25} = 55$		
(b)	B1:	4-1=3 (may be in words) and explanation of what the constraint is		
(c)	B1:	Both hypotheses correct. eg The data fits a discrete uniform distribu	ition	
	M1:	Attempting to find $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - N$ May be implied by aw value of 0.0805	vrt 6.74 or	·р
	A1:	awrt 6.74 or $\frac{290}{43}$ oe May be implied by <i>p</i> value of 0.0805		
	B1:	awrt 7.82 (Calc 7.8147)		
	A1:	Drawing correct inference in context. Need the word die or tetrahed	al	

Ques	stion		Scheme	Marks	AOs		
20	a)	<i>C</i> ~	Poisson (3.75)	M1	3.3		
_(0)		P(C	$C \ge 2$ = 0.88829*. awrt 0.8883*	A1*cso	1.1b		
				(2)			
(h)		$D \sim$	B(6, "0.888")	M1	3.3		
		P(L	$D \le 3$ = 0.02163 awrt 0.0216 / 0.0215	A1	1.1b		
	-			(2)			
(0	2)	P(C	C = 8) = 0.02281	B1	1.1b		
		<i>E</i> ~	$B(150, "0.02281") \implies mean = 150 \times "0.02281" [= 3.4215]$	M1	3.3		
	-	$E \sim$	$\operatorname{Po}("3.4215") \Longrightarrow \operatorname{P}(E \ge 3) = [1 - \operatorname{P}(E \le 2)]$	M1	3.4		
	-		= 0.664 *	A1*cso	2.1		
	-			(4)			
(ċ	1)	The	number of periods is large and the probability of receiving 8 calls	B1	24		
<u> </u>	,	in 3	0-minutes is small.	(1)	2.4		
(6	e)	H ₀ :	$\lambda = 30$ H ₁ : $\lambda \neq 30$	B1	2.5		
				(1)			
(1	f)	Χ~	- Po(30)	B1	3.3		
		P(X	$X \ge 40) = 1 - P(X \le 39)$	M1	1.1b		
			= 0.04625	A1	1.1b		
		0.04	$6 > 0.025$ or no evidence to reject H_0				
		The	re is insufficient evidence at the 5% level of significance that the	A1	2.2b		
		IIuII	iber of cans received is different of a Saturday	(4) (14 n			
Note	s:			1 +1)			
	 		For calculating the mean and setting up the correct model. Poisson	may be im	plied		
(a)			by 0.8883 or better or $1 - a wrt 0.1117$ but must see 3.75 or $1.25 \times$	3			
(b)	Al*c	so:	$P(C \ge 2) = awrt \ 0.8883 \text{ or } 1 - awrt \ 0.1117 = 0.888 \text{ Must see } P(C \ge 2)$	2) oe			
(0)	A1:		awrt 0.0216 or awrt 0.0215	t answer			
(c)	B1:		awrt 0.0228				
	M1:		Setting up a new model B(150, "0.0228") and using <i>np</i> (working seen if incorrect)				
	M1:		Using the model Po(their <i>np</i>) Must be clearly stated and $P(E \ge 3)$	oe seen			
	A1*c	so:	NB Use of B(150 0.02281) gives 0.668				
(d)	(d) B1:		Idea that $n = 150$ (number of periods selected) is large and p is 0.022 (exactly 8 calls in the time period) is small				
(e)	can's in the time period) is small. e) B1: Both hypotheses correct using λ or μ allow 1.25 or 3.75						
(f)	B1:		Realising Po(30) needs to be used. NB Implied by correct answer or P(X = 40) = 0.0139				
	M1:		Writing or using $1-P(X \leq 39)$ or if CR method for $P(X \geq 42) = 0.0221$				
	A1:		0.04 or awrt 0.05 or CR $X \ge 42$ oe must be CR and not probabil	ity			
	Δ1.		A fully correct solution and correct inference in context. Calls required				
			If put this prob but then give $Cr X \ge 40 M1A1A0$				

Ques	tion	Scheme	Marks	AOs	
3		$\overline{X} \approx N(256,)$ oe	M1	3.1a	
		$\overline{X} \approx N(256, 0.9216)$	A1	1.1b	
		$P(\overline{X} > 257) = P(Z > \frac{257 - 256}{\sqrt{0.9216''}}) [= awrt 1.04]$	dM1	3.4	
		p = 0.1492	A1	1.1b	
			(4)		
			(4 n	narks)	
Notes	5:				
	M1:	For realising the need to use the CLT with correct mean			
	A1:	For a correct normal stated			
	dM1:	Dep on previous Method mark. Use of the normal model to find $P(\overline{X} > 257)$ If final			
u.v.11.		answer is incorrect then we need to see the standardisation using the	ir <i>σ</i> .		
	A1:	awrt 0.149 (0.14878 from calculator)			
	NB Allow awrt 0.148 if a continuity correction is used.				

Ques	stion	Scheme	Marks	AOs
4(a)	4E(N) + 2 = 14.8 or E(N) = 3.2	M1	3.1a
		0.2 + 0.1 + 0.75 + 4b + 5c = 3.2	M1	1.1b
	-	$\frac{c}{0.25 + b + c} = 0.5 \text{ or } 0.25 = c - b$	M1	3.1a
	_	b = 0.1 and $c = 0.35$		
		$E(N^{2}) = 1 \times 0.2 + 4 \times 0.05 + 9 \times 0.25 + 16 \times "0.1" + 25 \times "0.35" [=13]$	M1	1.1b
		$Var(N) = "13" - "3.2"^2$	dM1	1.1b
		= 2.76 *	A1*	2.1
			(6)	
(t)	fee0507090100100 $P(N=n)$ a0.20.050.25bc	M1	3.3
		$50 \times 0.2 + 70 \times 0.05 + 90 \times 0.25 + 100 \times "0.1" + 100 \times "0.35"$	M1	1.1b
		= 81p	A1	1.1b
			(3)	
(0	:)	Poisson distribution will assign substantial probability to $N > 5$	B1	3.5b
			(1)	
			(10 n	narks)
Note	S			
(a)	M1:	For using the given information to find $E(N)$		
		ALT $a+b+c=0.5$ oe		
	M1: For use of $\sum nP(N = n) = "3.2"$ At least 3 terms correct			
	ALT $\sum (4n+2)P(N=n) = 14.8 \Rightarrow 2a+1.2+0.5+3.5+18b+22c = 1$ terms correct		=14.8 At le	ast 3
	M1: Forming an equation in <i>b</i> and <i>c</i> using conditional probability			
	M1: For using $\sum n^2 P(N=n)$ Allow with the letters <i>b</i> and <i>c</i>			
	dM1:	Dependent on previous method mark. Correct method to find Var(A	Ŋ	
	A1*:	All previous marks must be awarded and 2.76 stated		
(b)	M1:	Setting up a new model with the correct fees. At least 3 terms corre 0.7, 0.9, 1	ct. Allow 0	.5,
	M1:	Correct method for calculating $E(fee)$ Allow with the letters b and c		
	A1:	81[p] No units needed. Allow 0.81 if fees are in pounds		
(c)	B1:	A correct limitation.		

Question	Scheme	Marks	AOs	
5(a)	P(at least 3 whites) = $(1 - 0.07)^3$	M1	1.1b	
	or $1 - 0.07 - 0.93 \times 0.07 - 0.93^2 \times 0.07$			
	= 0.8043 awrt 0.804	A1	1.1b	
		(2)		
(b)	P(2nd red on 9 th draw) = $\binom{8}{1}$ 0.93 ⁷ × 0.07 ²	M1	3.3	
	= 0.02358 awrt 0.0236	A1	1.1b	
		(2)		
(C)	$\frac{n}{p} = 4400$ and $\frac{n(1-p)}{p^2} = 660^2$	M1 A1	3.1b 1.1b	
	1 - p = 99p oe	M1	1.1b	
	<i>p</i> = 0.01	A1	1.1b	
		(4)		
(d)	H ₀ : $p = 0.07$ H ₁ : $p < 0.07$	B1	2.5	
	<i>J</i> ~ Geo(0.07)	M1	3.3	
	$P(J \ge c) < 0.1 \Longrightarrow (1 - 0.07)^{c-1} < 0.1$	M1	3.4	
	$c-1 > \frac{\log 0.1}{\log 0.93}$	M1	1.1b	
	$c > 32.72$ \therefore CR $J \ge 33$	A1	1.1b	
		(5)		
(e)	34 is in the Critical region	M1	1.1b	
	There is evidence to suggest that Jerry's bag contains a smaller proportion of red counters than Asha's bag.	A1	2.2b	
		(2)		
(f)	Power of test = $P(J \ge 33 p = 0.011)$	M1	2.1	
	$= (1 - 0.011)^{32}$ oe	M1	1.1b	
	= 0.7019*	A1*	1.1b	
		(10		
(18 marks)				

Note	es:	
(a)	M1:	A correct method to find $P(X \ge 3)$
	A1:	awrt 0.804
(b)	M1:	For selecting the appropriate model negative binomial or binomial with an extra trial
	A1:	awrt 0.0236
(c)	M1:	Forming an equation for the mean and variance. At least one correct.
	A1:	Both equations correct
		Allow M1 A1 if both equations correct with the same number subst for <i>n</i>
	7.1	Solving the 2 equations leading to $1 - p = 99p$ or Allow $p - p^2 = 99p^2$ ft their
	M1:	4400 and 660 Allow $1 - p = 0.15p$
	A1:	0.01
(d)	M1:	Both hypotheses correct using correct notation allow eg $p > 0.93$
	M1:	Realising the need to use Geo(0.07) ft their Hypotheses
	M1:	Using the model to find P($J \ge c$) Condone $(1-0.07)^c < 0.1$ ft their 0.07 $\neq 0.93$
		ALT $P(J \ge 32) = 0.1[054]$ or $P(J \ge 33) = 0.09[8]$ Implied by correct CR
	M1:	For a valid method to solve the inequality or $P(J \ge 32) = 0.1[054]$ and
		$P(J \ge 33) = 0.09[81]$ Implied by correct CR
	A1:	Correct CR(any letter) A0 if given as a probability statement. Must be integer
(e)	M1:	Comparing 34 with their CR eg $34 > 33$ $34 \ge 33$ or $P(J \ge 34) = 0.09[12]$
	A1:	Fully correct conclusion in context. Allow Jerry's belief is true. Allow probability
		Tor proportion
(f)	M1:	Realising they need to find P(their CR in (d)) Allow $1 - P(J \leq 32)$
	M1.	For a Correct method. Allow $1 - 0.2981$ May be implied by 0.7019 If the CR is
incorrect $(1-0.011)^{\text{"CR"-1}}$ or $1 - \{1-(1-0.011)^{\text{"CR"-1}}\}$		incorrect $(1-0.011)^{"CR"-1}$ or $1 - \{1-(1-0.011)^{"CR"-1}\}$ must be seen
	A1*:	Only award if both method marks awarded.

Question	Scheme	Marks	AOs
6(a)	$G_X(1) = 1$	M1	2.1
	$k \times 3^5 = 1 \therefore k = \frac{1}{243} *$	A1*cso (2)	1.1b
(b)	$P(X=2)$ is coefficient of t^2 so $G_X(t) = k\left(\dots + {}^5C_2(2t)^2 + \dots\right)$	M1	1.1b
	$P(X=2) = \frac{40}{243}$	A1 (2)	1.1b
(c)	$G_{W}(t) = \frac{t^{3}}{243} \left(1 + 2(t^{2})\right)^{5}$	M1	3.1a
	$G_{W}(t) = \frac{t^{3}}{243} \left(1 + 2t^{2}\right)^{5}$	A1 (2)	1.1b
(d)	$G_{U}(t) = \frac{1}{243} (1+2t)^{5} \times \frac{t(1+2t)^{2}}{9}$	M1	3.1a
	$=\frac{t\left(1+2t\right)^{7}}{2187}$	A1 (2)	1.1b
(e)	$G_{U}'(t) = \frac{14t(1+2t)^{6}}{2187} + \frac{(1+2t)^{7}}{2187}$	M1	2.1
	$G_{U}'(1) = \frac{17}{3}$	A1ft	1.1b
	$G_{U}''(t) = \frac{168t(1+2t)^{5}}{2187} + \frac{14(1+2t)^{6}}{2187} + \frac{14(1+2t)^{6}}{2187}$	M1	2.1
	$G_{U}''(1) = 28$	A1	1.1b
	$Var(U) = "28" + "\frac{17}{3}" - \left("\frac{17}{3}"\right)^2$	M1	2.1
	$=\frac{14}{9}$	A1 (6)	1.1b
ALT(e)	$G_{X}''(t) = A(1+2t)^{3}$	M1	
	$G_{X}'(1) = \frac{10}{3} \text{ and } G_{X}''(1) = \frac{80}{9}$	A1ft	
	$\mathbf{G}_{Y}^{\prime\prime}(t) = H\left(8 + 24t\right)$	M1	
	$G_{Y}'(1) = \frac{7}{3}$ and $G_{Y}''(1) = \frac{32}{9}$	A1	
	Using $\mathbf{G}_{U}''(1) + \mathbf{G}_{U}'(1) - \left(\mathbf{G}_{U}'(1)\right)^2$ to find $\operatorname{Var}(X)$, Var Y and Var U	M1	
	$\frac{14}{9}$ or awrt1.56	A1	
		(14 n	aarks)

Note	Notes:		
(a)	M1:	Stating $G_X(1) = 1$ eg $G_X(1) = k(1+2)^5 = 1$ $k(1+2)^5 = 1$ Allow Verification $\frac{1}{243} \times 3^5 = 1$	
	A1*:	Fully correct proof with no errors Substituting $t = 1$ Verification need therefore $G_X(1) = 1$	
(b)	M1:	Attempting to find the coefficient of t^2	
	A1:	$\frac{40}{243}$ or awrt 0.165	
(c)	M1:	Realising the need to multiply through by t^3 or subst t^2 for t	
	A1:	$\frac{t^3}{243} \left(1 + 2t^2\right)^5 \text{ oe eg } \frac{t^3}{243} \left(1 + 10t^2 + 40t^4 + 80t^6 + 80t^8 + 32t^{10}\right)$	
(d)	M1:	Realising the need to use $G_U(t) = G_X(t) \times G_Y(t)$	
	A1:	$\frac{t(1+2t)^7}{2187}$ oe	
(e)	M1:	For an attempt to differentiate G (<i>u</i>) e.g $G_U'(t) = At(1+2t)^6 + B(1+2t)^7$ ft their part(d) if in the form $kt(1+2t)^n$ where $n \ge 5$	
	A1ft:	$\frac{17}{3}$ or awrt 5.67	
	M1:	For attempting second derivative eg $G_U''(t) = Ct(1+2t)^5 + D(1+2t)^6$ ft their part(d) if in the form $kt(1+2t)^n$ where $n \ge 5$	
	A1	28	
	M1:	Using $G_{U}''(1) + G_{U}'(1) - (G_{U}'(1))^2$ ft their values	
	A1:	$\frac{14}{9}$ or awrt1.56	

Quest	ion	Scheme	Marks	AOs
7 (a))	Size of the test $= 0.01$	B1	1.2
			(1)	
(b)(i)		Let CR be $\overline{L} < k$		
		$\frac{k-15}{\frac{0.2}{\sqrt{n}}} = -2.3263$	M1	3.4
		$k = 15 - \frac{0.46526}{\sqrt{n}}$	A1	1.1b
		$\frac{"15 - \frac{0.46526}{\sqrt{n}}"-14.9}{\frac{0.2}{\sqrt{n}}} > 1.6449$	M1d A1ft	3.4 1.1b
		$\frac{0.79424}{\sqrt{n}} < 0.1$ $\sqrt{n} > 7.9424$ oe	M1d	1.1b
		<i>n</i> = 64	A1cso	2.1
			(6)	
(ii)		The probability of a Type II error would decrease.	B1	2.2a
			(1)	
			(8 n	narks)
Notes				
(a)	B1:	0.01		
(b)(i)	M1:	Finding the CR using the Normal distribution must have $1.5 < z < 1.5 < z $	3.5	
	A1:	A correct equation in the form $k =$ and for use of awrt 2.326 (imp 0.46526 or awrt 0.46527)	plied by av	wrt
	M1c	Dependent on previous M being awarded. Standardising using their to a <i>z</i> value $1.5 < z < 3$ to form an equation to able <i>n</i> to be found. N than >	k and equ May use =	ating rather
	A1ft	t: Ft their k for a correct equation with awrt 1.645		
	M1d	1: Dependent on previous M being awarded. Isolating \sqrt{n} or squaring leading to a value for <i>n</i> . Condone $n = 7.9424$	g both side	s
	A1c	so: 64 with correct working		
(ii)	B1:	Suitable comment		

ALT (b)(i)	$\frac{k - 14.9}{\frac{0.2}{\sqrt{n}}} = 1.6449$	M1	3.4
	$k = 14.9 + \frac{0.32898}{\sqrt{n}}$	A1	1.1b
	$\frac{"14.9 + \frac{0.32898}{\sqrt{n}}"-15}{\frac{0.2}{\sqrt{n}}} > -2.3263$	M1d A1ft	3.4 1.1b
	$\frac{0.79424}{\sqrt{n}} < 0.1 \sqrt{n} > 7.9424 \text{oe}$	M1d	1.1b
	<i>n</i> = 64	A1cso	2.1
		(6)	