

Mark Scheme

Summer 2023

Pearson Edexcel GCE
Advanced Subsiduary Level
Further Mathematics (8FM0)
Paper 23 Further Statistics 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Publications Code 8FM0_23_2306_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 40.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places

complete.

- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the most

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Qu		Scheme	Marks	AO
1	E(X)=0	$E(X) = 0 \times r + k + 2 \times \frac{k}{2} + 3 \times \frac{k}{3} + 4 \times \frac{k}{4} \text{or} 4k$		
		$E(X^{2}) = k + 2^{2} \times \frac{k}{2} + 3^{2} \times \frac{k}{3} + 4^{2} \times \frac{k}{4} \text{or} k + 2k + 3k + 4k \text{or} 10k$		
	$\sqrt{\operatorname{Var}(X)}$	$= E(X) \Rightarrow E(X^{2}) = 2[E(X)]^{2} \underline{\text{or}} \ 10k - (4k)^{2} = (4k)^{2}$ $^{2} \Rightarrow k = \frac{5}{16}$	M1	1.1b
	10k = 32k	$k^2 \Rightarrow k = \frac{3}{16}$	A1	1.1b
	$\left[\sum_{k=0}^{10} \text{probs} = 1 \Rightarrow \right]^{10} r + \frac{1}{12} (12k + 6k + 4k + 3k) = 1$			3.1a
	$\left[\Rightarrow r + \frac{25}{12}k = 1 \right]$			
		$r = 1 - \frac{25}{12} \times \frac{5}{16} = \frac{67}{192}$		
		Notes		
	B1	for a correct expression for $E(X)$		
	1 st M1	for attempting $E(X^2)$ – at least 3 correct non-zero terms		
	$2^{nd} M1$	Use of Var(X) = E(X^2) – [E(X)] to form an expression in k with	$\sqrt{\operatorname{Var}(X)}$	=E(X)
		ft their $10k$ and their $4k$		
		Must use a consistent expression for $E(X)$ in both side of their equation		
	1 st A1 for a correct equation for k (e.g. 2TQ) or $k = \frac{5}{16}$ or 0.3125.			
		They may ignore or reject solution of $k = 0$		
	ard 3.54	Allow for $r = 0.349$ or better		
	3 rd M1 for attempt at an equation in r and k using sum of probs.			
	At least 4 terms correct in terms of k or numerically using their value of k for $\frac{67}{192}$ or exact equivalents e.g. 0.3489583			
		Correct exact answer implies full marks		

Qu		Scheme	Marks	AO
2.(a)	$E(RR) = \frac{60 \times 60}{150} \text{ or } E(BB) = \frac{30 \times 27}{150} \text{ or } E(YY) = \frac{60 \times 63}{150}$			1.1b
	E(RR) = 24 and $E(BB) = 5.4$ and $E(YY) = 25.2$	A1 (2)	1.1b
(b)	[E(BB) >	5 so no need for pooling] $v = (3-1)(3-1) = 4$	B1	3.1b
		Critical value: $\chi_4^2 (5\%) = 9.488$	B1ft	1.1b
	(significant) evidence that the <u>colour of balls</u> is <u>not independent</u>)			2.2b
(c)	$O_i > E_i$ for pairings of the same colour			3.5a
	and some children may be cheating when selecting the 2 nd ball so choice not independent (o.e.)			
			(6)	
		Notes		
(a)	M1	for at least one correct calculation seen		
	A1	for all 3 expected frequencies correct, must be exact.		
(b)	1st B1	for 4 degrees of freedom		
	2 nd B1ft	for awrt 9.488 or ft their degrees of freedom for 5% cv		
	3 rd B1ft	for correct contextual conclusion mentioning "colour" and "indepen	dent"	
		Must be consistent with their cv		
(c)	B1	Allow associated instead of not independent Stating or indicating that $O > E$ and a suitable reason for the lack of	findanand	onoo
(6)	DI	Stating or indicating that $O_i > E_i$ and a suitable reason for the lack of that would invalidate the modelling assumption. Such as:	ппаерепа	ence
		cheating/looking		
		 The first ball being replaced by the child so more likely to be 	e picked ag	ain

Qu		Scheme	Marks	AO	
3. (a)	[F = no o]	f faults in $A \text{ m}^2$] $F \sim \text{Po}(A \times 0.4)$	M1	3.3	
	[P(F=0)	$[P(F=0) \Rightarrow] 0.0907 = e^{-0.4A}$		3.4	
	$A = \underline{6}$			1.1b	
			(3)		
(b)	[T = no. c]	of tablecloths with no faults] $T \sim B(20, 0.0907)$	M1	3.3	
	P(T > 1)	$=1-P(T\leqslant 1)$	M1	1.1b	
		= 0.55276 = awrt 0.553	A1	3.4	
			(3)		
(c)(i)	$[X \sim B(1)]$	00, 0.0907)]	M1	3.3	
	E(X) = 10	$00 \times 0.0907 = 9.07$	A1	1.1b	
(ii)	Var(X) =	$100 \times 0.0907 \times (1 - 0.0907) = 8.247351$ awrt 8.25	A1	1.1b	
			(3)		
(d)	$X \approx \sim \text{Po}$	(9.07);	M1	3.4	
	P(X=10)	$0 \approx 0.11947$ 0.1195 or awrt 0.119	A1	1.1b	
			(2)		
(e)	H_0 : $\lambda = 0$	0.4 (or $\lambda = 12$) H_1 : $\lambda < 0.4$ (or $\lambda < 12$)	B1	2.5	
	[Y = no. c]	of faults from new machine] $Y \sim Po(12)$	M1	1.1b/3.3	
	$P(Y \le 6)$	= 0.04582	A1	3.4	
	[Significa	ant] there is evidence to support the claim	A1	2.2b	
			(4)		
(f)	p – value	= 0.04582 awrt 0.0458	B1ft	1.2	
			(1)		
			(16)		
	1 ct 3 / 1	Notes			
(a)	1 st M1	for selecting the correct model Po(0.4A)		1.	
	2 nd M1	for a correct equation - may be implied by a correct answer with no in	icorrect woi	rking	
4.)	A1	for $A = 6$ (or awrt 6.0)	*1	1.\	
(b)	1 st M1	for selecting a correct model B(20, 0.0907) used, or seen if only district the second of the second	,	,	
	2 nd M1	for correctly interpreting "more than 1" to reach $1 - P(T \le 1)$. May be	e implied by	Al	
()(*)	A1	for awrt 0.553			
(c)(i)	M1	for $X \sim B(100, 0.0907)$ used, or seen if only distribution in (c). May be implied by correct $E(X)$ or $Var(X)$			
	A1	for 9.07			
(ii)	A1	for awrt 8.25 SC - award M0A1A0 for:			
	• using $X \sim B(100, 0.4)$ leading to $E(X) = 40$, $Var(X) = 24$				
(d)	using $X \sim B(100, p)$, $0 and E(X) = 100p, Var(X) = 100p(1-p)M1 for selecting the correct Poisson model – ft their answer to (c)(i)$				
(u)	A1	for 0.1195or awrt 0.119			
(e)	B1				
	M1	J. C.			
	1st A1 for a correct probability must be 0.046 or better				
		2 nd A1 for a correct conclusion in context using "claim" or "rate of faults"			
(f)	2 111	B1ft for awrt 0.0458 o.e. e.g. 4.58% or ft their answer to 1st A1 in (e)		
(1)		Diff. for awit 0.0436 0.c. e.g. 4.36% of it their answer to 1 Al III (e)		

" 17.85" 9.64 In the second region of the second region region region region of the second region regio	Qu		Scheme	Marks	AO	
than 5 (o.e.) (c) Need λ : $[\hat{\lambda}] = \frac{0 \times 12 + 1 \times 11 + 2 \times 19 + 3 \times 14 + 4 \times 3 + 5 \times 1}{(12 + 11 + 19 + 14 + 3 + 1)}$ or 1.8 M1 [Under Ho λ ~Po(1.8) $E_1 = 60 \times P(X = 1) = 17.85(227)$ M1 $E_2 = 60 \times P(X = 2) = 16.06(705)$ A1 [In the second of the seco	4. (a)	<u> </u>			2.5	
Need λ : $\left[\hat{\lambda}\right] = \frac{10 \times 12 + 1 \times 11 + 2 \times 19 + 3 \times 14 + 4 \times 3 + 5 \times 1}{(12 + 11 + 19 + 14 + 3 + 1)}$ or 1.8 M1 I.1b I[Under $H_0 X - Po(1.8) E_1 = 60 \times P(X = 1) = 17.85(227)$ M1 $E_2 = 60 \times P(X = 2) = 16.06(705)$ A1 I.1b $E_{\geq 5} = 60 - \sum_{0}^{4} E_i = 2.18(43996)$ M1 A1 I.1b (d) (d) $\frac{(11 - "17.85"}{"17.85"} = 2.6287or$ $\frac{(14 - 9.64)^2}{9.64} = 1.97195$ M1 I.1b awrt 2.63 and awrt 1.97 A1 (2) (e) Need to combine last two columns since E_i are < 5 Degrees of freedom therefore $5 - 2$ since mean for Poisson estimated from O_i B1 I.1a (2) (f) $\chi_3^2(5\%) = 7.815$ B1 (Not significant) insufficient evidence to reject Ania's belief B1 B1 2.2b (2) (2) Notes (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson", Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond $5 - \frac{1}{2} = \frac$	(b)				2.4	
$E_2 = 60 \times \text{P}(X = 2) = 16.06(705)$ $E_{>5} = 60 - \sum_{0}^{4} E_i = 2.18(43996)$ Blft (d) $\frac{(11 - "17.85")}{"17.85"} = 2.6287or$ $\frac{(14 - 9.64)^2}{9.64} = 1.97195$ M1 1.1b awrt 2.63 and awrt 1.97 (e) Need to combine last two columns since E_i are < 5 Degrees of freedom therefore $5 - 2$ since mean for Poisson estimated from O_i B1 1.1a (2) (f) $\chi_3^2(5\%) = 7.815$ (Not significant) insufficient evidence to reject Anja's belief B1 2.2b Notes (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson". Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond $5 = 2$ since method for finding E_i or E_i (implied by one correct value) 1" A1 for awrt 17.85 and awrt 16.07 Blft for awrt 2.18, or using 60 – (sum of their E_i) or $60 \times (1 - P(X \le 4))$ (d) M1 for air to a suitable recorrect expression (fit their E_i) A1 for awrt 2.63 and awrt 1.97 (e) 1" B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ allow candidates describing com	(c)	Need λ:	Need λ : $\left[\widehat{\lambda} = \right] \frac{0 \times 12 + 1 \times 11 + 2 \times 19 + 3 \times 14 + 4 \times 3 + 5 \times 1}{(12 + 11 + 19 + 14 + 3 + 1)} \underline{\text{or}} 1.8$			
(d) $\frac{(11-"17.85")^2}{"17.85"} = 2.6287\text{ or } \frac{(14-9.64)^2}{9.64} = 1.97195$ $\text{M1} \qquad \begin{array}{c} 1.1\text{ lb} \\ 1.1 l$		$E_2 = 60 \times$	·			
$\frac{(11-17.85)^n}{"17.85"} = 2.6287\text{ or } \frac{(14-3.04)}{9.64} = 1.97195$ $\text{M1} \qquad 1.1b \\ 1.1b \\ \text{awrt } 2.63 \text{ and awrt } 1.97$ $\text{A1} \qquad \qquad$		$E_{\geqslant 5} = 60$				
(e) Need to combine last two columns since E_i are <5	(d)	17.65			1.1b 1.1b	
Degrees of freedom therefore $5-2$ since mean for Poisson estimated from O_i B1 (2) (f) $\chi_3^2(5\%) = 7.815$ B1 1.1b (Not significant) insufficient evidence to reject Anja's belief B1 2.2b (2) Notes (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson". Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond 5 e.g. sample space for Poisson being $[0, \infty)$ (c) $I^{st}MI$ for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from $P(X=0) \Rightarrow 60e^{-\lambda} = 9.92$ $2^{md}M1$ for a correct method for finding E_1 or E_2 (implied by one correct value) $I^{st}AI$ for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using $60 - (\text{sum of their } E_i)$ or $60 \times (1 - P(X \le 4))$ (d) M1 for either correct expression (ft their E_1) A1 for awrt 2.63 and awrt 1.97 (e) $I^{st}BI$ for explaining need to pool columns since $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ 2 nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv						
(c) $\chi_3^2(5\%) = 7.815$ (Not significant) insufficient evidence to reject Anja's belief B1 2.2b Notes (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson". Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond 5 e.g. sample space for Poisson being $[0, \infty)$ (c) 1^{st} M1 for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from $P(X=0) \Rightarrow 60e^{-\lambda} = 9.92$ 2^{nd} M1 for a correct method for finding E_1 or E_2 (implied by one correct value) 1^{st} A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using $60 - (\text{sum of their } E_1)$ or $60 \times (1 - P(X \le 4))$ (d) M1 for either correct expression (ft their E_1) A1 for awrt 2.63 and awrt 1.97 (e) 1^{st} B1 for explaining need to pool columns since $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ for mentioning mean/rate/parameter/ λ estimated from O_i and 2 constraints (f) 1^{st} B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv	(e)			B1	1.1a	
(Not significant) insufficient evidence to reject Anja's belief B1 2.2b Notes (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson". Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond 5 e.g. sample space for Poisson being $[0, \infty)$ (c) 1^{st} M1 for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from $P(X=0) \Rightarrow 60e^{-\lambda} = 9.92$ 2^{nd} M1 for a correct method for finding E_1 or E_2 (implied by one correct value) 1^{st} A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using E_1 or E_2 (implied by one correct value) (d) M1 for either correct expression (ft their E_1) or E_2 (implied by E_3) (e) E_3 for explaining need to pool columns since $E_4 < E_3$ allow candidates describing combining last three columns as long as they say $E_4 < E_3$ allow candidates describing combining last three columns as long as they say $E_4 < E_3$ and B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv						
Notes (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson". Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond 5 e.g. sample space for Poisson being [0, ∞) (c) 1st M1 for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from P(X = 0) ⇒ 60 $e^{-\lambda}$ = 9.92 2 $e^{-\lambda}$ M1 for a correct method for finding E_1 or E_2 (implied by one correct value) 1st A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using 60 − (sum of their E_i) or 60× (1 − P(X ≤ 4)) (d) M1 for either correct expression (ft their E_1) A1 for awrt 2.63 and awrt 1.97 (e) 1st B1 for explaining need to pool columns since E_i < 5 allow candidates describing combining last three columns as long as they say E_i < 5 for mentioning mean/rate/parameter/ λ estimated from O_i and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv	(f)	$\chi_3^2(5\%) = 7.815$		B1	1.1b	
 Notes (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson". Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond 5 e.g. sample space for Poisson being [0, ∞) (c) 1st M1 for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from P(X=0) ⇒ 60e^{-λ} = 9.92 for a correct method for finding E₁ or E₂ (implied by one correct value) 1st A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using 60 – (sum of their Eᵢ) or 60× (1 – P(X≤4)) (d) M1 for either correct expression (ft their E₁) A1 for awrt 2.63 and awrt 1.97 (e) 1st B1 for explaining need to pool columns since Eᵢ < 5 allow candidates describing combining last three columns as long as they say Eᵢ < 5 for mentioning mean/rate/parameter/λ estimated from Oᵢ and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv 		(Not sign	5			
 Notes (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson". Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond 5 e.g. sample space for Poisson being [0, ∞) (c) 1st M1 for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from P(X=0) ⇒ 60e^{-λ} = 9.92 for a correct method for finding E₁ or E₂ (implied by one correct value) 1st A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using 60 – (sum of their Eᵢ) or 60× (1 – P(X≤4)) (d) M1 for either correct expression (ft their E₁) A1 for awrt 2.63 and awrt 1.97 (e) 1st B1 for explaining need to pool columns since Eᵢ < 5 allow candidates describing combining last three columns as long as they say Eᵢ < 5 for mentioning mean/rate/parameter/λ estimated from Oᵢ and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv 				(2)		
 (a) B1 correct hypotheses mentioning "breakdowns" and "Poisson". Po(1.8) o.e. is B0 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond 5 e.g. sample space for Poisson being [0, ∞) (c) 1st M1 for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from P(X=0) ⇒ 60e^{-λ} = 9.92 2nd M1 for a correct method for finding E₁ or E₂ (implied by one correct value) 1st A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using 60 – (sum of their Eᵢ) or 60× (1 – P(X≤4)) (d) M1 for either correct expression (ft their E₁) A1 for awrt 2.63 and awrt 1.97 (e) 1st B1 for explaining need to pool columns since Eᵢ < 5 allow candidates describing combining last three columns as long as they say Eᵢ < 5 for mentioning mean/rate/parameter/λ estimated from Oᵢ and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv 			Notos	(12)		
 (b) B1 for a suitable reason mentioning the Poisson distribution taking values beyond 5 e.g. sample space for Poisson being [0, ∞) (c) 1st M1 for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from P(X=0) ⇒60e^{-λ}=9.92 2nd M1 for a correct method for finding E₁ or E₂ (implied by one correct value) 1st A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using 60 – (sum of their Eᵢ) or 60× (1 – P(X≤4)) (d) M1 for either correct expression (ft their E₁) A1 for awrt 2.63 and awrt 1.97 (e) 1st B1 for explaining need to pool columns since Eᵢ < 5 allow candidates describing combining last three columns as long as they say Eᵢ < 5 for mentioning mean/rate/parameter/λ estimated from Oᵢ and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv 	(a)	B1		is B0		
 (c) 1st M1 for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from P(X=0) ⇒ 60e^{-λ} = 9.92 for a correct method for finding E₁ or E₂ (implied by one correct value) 1st A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using 60 – (sum of their Eᵢ) or 60× (1 – P(X≤4)) (d) M1 for either correct expression (ft their E₁) A1 for awrt 2.63 and awrt 1.97 (e) 1st B1 for explaining need to pool columns since Eᵢ < 5 allow candidates describing combining last three columns as long as they say Eᵢ < 5 for mentioning mean/rate/parameter/λ estimated from Oᵢ and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv 			for a suitable reason mentioning the Poisson distribution taking values bey			
1st A1 for awrt 17.85 and awrt 16.07 B1ft for awrt 2.18, or using 60 − (sum of their E _i) or 60× (1 − P(X ≤ 4)) (d) M1 for either correct expression (ft their E ₁) A1 for awrt 2.63 and awrt 1.97 (e) 1st B1 for explaining need to pool columns since E _i < 5 allow candidates describing combining last three columns as long as they say E _i < 5 2nd B1 for mentioning mean/rate/parameter/λ estimated from O _i and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv	(c)		for an expression for the mean with least 3 correct products and correct denominator M0 if they have found λ by working backwards from P($X=0$) \Rightarrow 60 $e^{-\lambda}=9.92$			
B1ft for awrt 2.18, or using $60 - (\text{sum of their } E_i)$ or $60 \times (1 - P(X \le 4))$ (d) M1 for either correct expression (ft their E_1) A1 for awrt 2.63 and awrt 1.97 (e) $1^{\text{st}} B1$ for explaining need to pool columns since $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ for mentioning mean/rate/parameter/ λ estimated from O_i and 2 constraints (f) $1^{\text{st}} B1$ for correct cv of 7.815 (or better) $2^{\text{nd}} B1$ for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv						
 (d) M1 for either correct expression (ft their E₁) A1 for awrt 2.63 and awrt 1.97 (e) 1st B1 for explaining need to pool columns since E_i < 5 allow candidates describing combining last three columns as long as they say E_i < 5 2nd B1 for mentioning mean/rate/parameter/λ estimated from O_i and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv 						
A1 for awrt 2.63 and awrt 1.97 (e) 1^{st} B1 for explaining need to pool columns since $E_i < 5$ allow candidates describing combining last three columns as long as they say $E_i < 5$ for mentioning mean/rate/parameter/ λ estimated from O_i and 2 constraints (f) 1^{st} B1 for correct cv of 7.815 (or better) 2^{nd} B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv	(d)					
allow candidates describing combining last three columns as long as they say $E_i < 5$ for mentioning mean/rate/parameter/ λ estimated from O_i and 2 constraints (f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv		A1	for awrt 2.63 and awrt 1.97			
(f) 1st B1 for correct cv of 7.815 (or better) 2nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv	(e)					
2 nd B1 for correct conclusion in context mentioning "breakdowns" and "Poisson" Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv			for mendelling mean rate parameter, v estimated from of and 2 constraints			
Allow equivalent words for belief, such as "theory" etc. Must be consistent with their cv	(f)					