| Surname | Other na | mes | |--|---------------|--------------------------------| | Pearson
Edexcel GCE | Centre Number | Candidate Number | | Core Mat | | s C1 | | Advanced Subsidi | iary | | | Wednesday 18 May 2016 Time: 1 hour 30 minute | 5 – Morning | Paper Reference 6663/01 | ## Calculators may NOT be used in this examination. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used. - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided - there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. ## Information - The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ | 4 | т. | | |---|------|---| | | Hin | _ | | | Fine | U | $$\int \left(2x^4 - \frac{4}{\sqrt{x}} + 3\right) \mathrm{d}x$$ | giving | anah | torm | 110 | 110 | aimn | logt | torm | |---------|------|---------|-----|------|----------|-------|--------| | 2111112 | Caul | TCI III | 111 | 11.5 | 21111111 | ICSL. | 101111 | | 0-10 | | ***** | | | J | | | **(4)** (Total 4 marks) Q1 | Express 9^{3x+1} in the form 3^y , giving y in the form $ax + b$, where a and a | b are constants. (2) | |--|----------------------| (Total 2 marks) | Leave **3.** (a) Simplify $$\sqrt{50} - \sqrt{18}$$ giving your answer in the form $a\sqrt{2}$, where a is an integer. **(2)** (b) Hence, or otherwise, simplify $$\frac{12\sqrt{3}}{\sqrt{50}-\sqrt{18}}$$ | giving your answer in the form $b\sqrt{c}$, where b and c are integers and $b \neq 1$ | | |--|-----| | | (3) | | Question 3 continued | blan | |----------------------|-----------------| Q3 | | | (Total 5 marks) | 4. Figure 1 Figure 1 shows a sketch of part of the curve with equation y = f(x). The curve has a maximum point A at (-2, 4) and a minimum point B at (3, -8) and passes through the origin O. On separate diagrams, sketch the curve with equation (a) $$y = 3f(x)$$, (2) (b) $$y = f(x) - 4$$ (3) On each diagram, show clearly the coordinates of the maximum and the minimum points and the coordinates of the point where the curve crosses the *y*-axis. Leave blank **Question 4 continued** Q4 (Total 5 marks) | 5. | Solve the simultaneous equations | | |----|----------------------------------|-----| | ٥. | sorve the siniaraneous equations | | | | y + 4x + 1 = 0 | | | | | | | | $y^2 + 5x^2 + 2x = 0$ | | | | | (6) | Question 5 continued | blank | |----------------------|-----------| Q5 | | (Total 6 marks) | | | (LOWI U IIII III) | | **6.** A sequence a_1, a_2, a_3, \dots is defined by $$a_1 = 4$$, $$a_{n+1} = 5 - ka_n, \quad n \geqslant 1$$ where k is a constant. (a) Write down expressions for a_2 and a_3 in terms of k. (2) Find (b) $\sum_{r=1}^{3} (1 + a_r)$ in terms of k, giving your answer in its simplest form, **(3)** (c) $$\sum_{r=1}^{100} (a_{r+1} + ka_r)$$ (1) | | Leave
blank | |----------------------|----------------| | Question 6 continued | Q6 | | (Total 6 marks) | | | 7. | Given | that | |-----|--------|------| | / · | OIVCII | unu | $$y = 3x^2 + 6x^{\frac{1}{3}} + \frac{2x^3 - 7}{3\sqrt{x}}, \quad x > 0$$ | find $\frac{dy}{dx}$. Give | e each term | in your | answer i | n its s | simplified | form. | |-----------------------------|-------------|---------|----------|---------|------------|-------| |-----------------------------|-------------|---------|----------|---------|------------|-------| **(6)** | (0 | |----| Question 7 continued | | blank | |----------------------|-----------------|------------| Q 7 | | | | ~ | | | (Total 6 marks) | | | 8. | The straight line with equation $y = 3x - 7$ does not cross or touch the curve with | | |----|---|-----| | | equation $y = 2px^2 - 6px + 4p$, where p is a constant. | | | | (a) Show that $4p^2 - 20p + 9 < 0$ | | | | (a) Show that $4p - 20p + 5 < 0$ | (4) | | | | (') | | | (b) Hence find the set of possible values of <i>p</i> . | | | | | (4) | Question 8 continued | blank | |----------------------|-----------| Q8 | | (Total 8 marks) | | | (| | - 9. On John's 10th birthday he received the first of an annual birthday gift of money from his uncle. This first gift was £60 and on each subsequent birthday the gift was £15 more than the year before. The amounts of these gifts form an arithmetic sequence. - (a) Show that, immediately after his 12th birthday, the total of these gifts was £225 **(1)** (b) Find the amount that John received from his uncle as a birthday gift on his 18th birthday. **(2)** (c) Find the total of these birthday gifts that John had received from his uncle up to and including his 21st birthday. (3) When John had received n of these birthday gifts, the total money that he had received from these gifts was £3375 (d) Show that $n^2 + 7n = 25 \times 18$ **(3)** (e) Find the value of n, when he had received £3375 in total, and so determine John's age at this time. **(2)** | uestion 9 continued | | |---------------------|--| Question 9 continued | | | |----------------------|--|--| blank | |----------------------|-------| | Question 9 continued | Q9 | | (Total 11 marks) | | 10. Figure 2 The points P(0, 2) and Q(3, 7) lie on the line l_1 , as shown in Figure 2. The line l_2 is perpendicular to l_1 , passes through Q and crosses the x-axis at the point R, as shown in Figure 2. Find (a) an equation for l_2 , giving your answer in the form ax + by + c = 0, where a, b and c are integers, (5) (b) the exact coordinates of R, **(2)** (c) the exact area of the quadrilateral *ORQP*, where *O* is the origin. **(5)** | | L | |----------------------|---| | | b | | uestion 10 continued | Question 10 continued | | | |-----------------------|--|--| Leave
blank | |-----------------------|-----------|----------------| | Question 10 continued | Q10 | | | | | | (Total | 12 marks) | | - 11. The curve C has equation $y = 2x^3 + kx^2 + 5x + 6$, where k is a constant. - (a) Find $\frac{dy}{dx}$ **(2)** The point P, where x = -2, lies on C. The tangent to C at the point P is parallel to the line with equation 2y - 17x - 1 = 0 Find (b) the value of k, **(4)** (c) the value of the y coordinate of P, **(2)** (d) the equation of the tangent to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers. (2) | | Leave | |-----------------------|-------| | | blank | | Question 11 continued | | | Question 11 continued | Question 11 continued | | | |-----------------------|--|--| Le
bl | |-----------------------|---|----------| | Question 11 continued | _ | Question 11 continued | | blank | |-----------------------|---------------------------|-------| Q1 | | | (Total 10 marks) | | | | TOTAL FOR PAPER: 75 MARKS | | | | END | |